Matching Items (5)
Filtering by

Clear all filters

136654-Thumbnail Image.png
Description
Many psychology-rooted studies into the games industry seek to identify emotions players experience during gameplay. However, there is a need to extend this kind of research beyond the realm of emotion into more long-term concepts, like satisfaction. This experiment tested whether a specific game mechanic was enjoyable. Other literature has

Many psychology-rooted studies into the games industry seek to identify emotions players experience during gameplay. However, there is a need to extend this kind of research beyond the realm of emotion into more long-term concepts, like satisfaction. This experiment tested whether a specific game mechanic was enjoyable. Other literature has established a way to describe and quantify enjoyability. Using a survey based on that work, this study evaluated the addition of a 'gel gun' to a platforming game. The fun was found to significantly increase players' affective experiences, concentration, and sense of control, all being components of an enjoyable experience. It also exposed some conflicts within the survey that merit investigation. It was concluded that the 'gel gun' feature increased gameplay enjoyability without significantly diminishing any other enjoyable factors. Future work may explore the connections between this feature and specific elements of enjoyment.
ContributorsMints, John (Author) / Meuth, Ryan (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor)
Created2014-12
136364-Thumbnail Image.png
Description
The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and

The purpose of this project was to program a Raspberry Pi to be able to play music from both local storage on the Pi and from internet radio stations such as Pandora. The Pi also needs to be able to play various types of file formats, such as mp3 and FLAC. Finally, the project is also to be driven by a mobile app running on a smartphone or tablet. To achieve this, a client server design was employed where the Raspberry Pi acts as the server and the mobile app is the client. The server functionality was achieved using a Python script that listens on a socket and calls various executables that handle the different formats of music being played. The client functionality was achieved by programming an Android app in Java that sends encoded commands to the server, which the server decodes and begins playing the music that command dictates. The designs for both the client and server are easily extensible and allow for any future modifications to the project to be easily made.
ContributorsStorto, Michael Olson (Author) / Burger, Kevin (Thesis director) / Meuth, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05
132577-Thumbnail Image.png
Description
The most important task for a beginning computer science student, in order for them to succeed in their future studies, is to learn to be able to understand code. One of the greatest indicators of student success in beginning programming courses is the ability to read code and predict its

The most important task for a beginning computer science student, in order for them to succeed in their future studies, is to learn to be able to understand code. One of the greatest indicators of student success in beginning programming courses is the ability to read code and predict its output, as this shows that the student truly understands what each line of code is doing. Yet few tools available to students today focus on helping students to improve their ability to read code. The goal of the random Python program generator is to give students a tool to practice this important skill.

The program writes randomly generated, syntactically correct Python 3 code in order to provide students infinite examples from which to study. The end goal of the project is to create an interactive tool where beginning programming students can click a button to generate a random code snippet, check if what they predict the output to be is correct, and get an explanation of the code line by line. The tool currently lacks a front end, but it currently is able to write Python code that includes assignment statements, delete statements, if statements, and print statements. It supports boolean, float, integer, and string variable types.
ContributorsDiLorenzo, Kaitlyn (Author) / Meuth, Ryan (Thesis director) / Miller, Phillip (Committee member) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166227-Thumbnail Image.png
Description
Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done

Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done with industry standard performance technology and protocols to create an accessible interface for creative expression. Artificial intelligence models were created to generate art based on simple text inputs. Users were then invited to display their creativity using the software, and a comprehensive performance showcased the potential of the system for artistic expression.
ContributorsPardhe, Joshua (Author) / Lim, Kang Yi (Co-author) / Meuth, Ryan (Thesis director) / Brian, Jennifer (Committee member) / Hermann, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
166228-Thumbnail Image.png
Description
Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done

Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done with industry standard performance technology and protocols to create an accessible interface for creative expression. Artificial intelligence models were created to generate art based on simple text inputs. Users were then invited to display their creativity using the software, and a comprehensive performance showcased the potential of the system for artistic expression.
ContributorsLim, Kang Yi (Author) / Pardhe, Joshua (Co-author) / Meuth, Ryan (Thesis director) / Brian, Jennifer (Committee member) / Hermann, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05