Matching Items (403)

Filtering by

Clear all filters

149779-Thumbnail Image.png

Substantive justice: how the substantive law shapes perceived fairness

Description

Psychology of justice research has demonstrated that individuals are concerned with both the process and the outcomes of a decision-making event. While the literature has demonstrated the importance of formal and informal aspects of procedural justice and the relevancy of

Psychology of justice research has demonstrated that individuals are concerned with both the process and the outcomes of a decision-making event. While the literature has demonstrated the importance of formal and informal aspects of procedural justice and the relevancy of moral values, the present study focuses on introducing a new form of justice: Substantive justice. Substantive justice focuses on how the legal system uses laws to constrain and direct human behavior, specifically focusing on the function and the structure of a law. The psychology of justice literature is missing the vital distinction between laws whose function is to create social opportunities versus threats and between laws structured concretely versus abstractly. In the present experiment, we found that participant evaluations of the fairness of the law, the outcome, and the decision-maker all varied depending on the function and structure of the law used as well as the outcome produced. Specifically, when considering adverse outcomes, individuals perceived laws whose function is to create liability (threats) as being fairer when structured as standards (abstract guidelines) rather than rules (concrete guidelines); however, the opposite is true when considering laws whose function is to create eligibility (opportunities). In juxtaposition, when receiving a favorable outcome, individuals perceived laws whose function is to create liability (threats) as being fairer when defined as rules (concrete guidelines) rather than standards (abstract guidelines).

Contributors

Agent

Created

Date Created
2011

149868-Thumbnail Image.png

The effects of scarcity and self-esteem on the experience of envy

Description

Envy may be an emotion shaped by evolution to resolve large resource disparities in zero-sum ancestral environments. Previous research has found evidence for two types of envy: benign envy, which drives greater effort and self-improvement; and malicious envy, which drives

Envy may be an emotion shaped by evolution to resolve large resource disparities in zero-sum ancestral environments. Previous research has found evidence for two types of envy: benign envy, which drives greater effort and self-improvement; and malicious envy, which drives hostility toward the better-off target. We predicted that perceived resource scarcity would stoke either type, moderated by individual differences. Specifically, we predicted that high self-esteem would steer people toward benign envy and self-improvement, whereas narcissism would spark malicious envy. After completing the Rosenberg self-esteem scale and the Narcissism Personality Inventory (NPI-16), participants were randomly assigned to either read an article detailing severe cuts to university financial aid budgets (scarcity) or an article summarizing various forms of financial aid (control). Each article ended with the same envy-inducing paragraph about a particularly affluent scholarship-winner, after which participants completed a measure of both envy types, capturing feelings, appraisals, and behavioral tendencies. Results show that self-esteem predicts less malicious envy, while narcissism and scarcity predict more. Self-esteem and narcissism interact such that self-esteem dampens the effect of narcissism on malicious envy. Self-esteem predicted benign envy when narcissism was low, but not when it was high.

Contributors

Agent

Created

Date Created
2011

149874-Thumbnail Image.png

Shared environment moderates the heritability of temperament in childhood

Description

The interplay of genes and environment on children's development is a complex dynamic process. As behavior geneticists begin to model protective as well as risk factors, and interactive as well as main effect influences, development is elucidated. It

The interplay of genes and environment on children's development is a complex dynamic process. As behavior geneticists begin to model protective as well as risk factors, and interactive as well as main effect influences, development is elucidated. It was hypothesized that positive parenting, a quality home environment, and high family cohesion would moderate the heritability of three components of temperament: Effortful Control, Negative Affectivity, and Extraversion/Surgency. Participants were drawn from the Wisconsin Twin Project and consisted of 1573 twins (51% boys), 88.5% Caucasian, M=7.93 years (SD=0.87). Higher order composites for the parenting and family environment moderators were formed from mother and father reports of Behavior Management Self-Assessment, Child Rearing Practices Report, Family Assessment Device, and Family Conflict Scale. Measures of the home environment (LEOS Living Environment Observation Scale and CHAOS Confusion, Hubbub, and Order Scale) were not composited due to the nature of the variables. Correlational analyses showed a majority of the temperament and environmental measures to be correlated (rs = -.49-.57). For Effortful Control, Negative Affectivity, and Extraversion/Surgency, estimates for the heritability and nonshared environment were 0.60 and 0.40, 0.80 and 0.20, and 0.59 and 0.41, respectively, with no significant main effects of the shared environment. Models incorporating environmental moderation of these estimates yielded parenting as a significant moderator for Negative Affectivity, LEOS for Effortful Control and Extraversion/Surgency, and CHAOS for Effortful Control and Extraversion/Surgency. Results suggest that the quality of the family environment may act as a permissive or determinative influence on the heritability and expression of temperament. Future analyses include the examination of interactive genetic influences. These findings underscore the importance of shared environment, and support the recent literature on the benefits of positive influences on children's development.

Contributors

Agent

Created

Date Created
2011

149824-Thumbnail Image.png

Modeling acquisition of nicotine self-administration in rats

Description

Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior

Nicotine is thought to underlie the reinforcing and dependence-producing effects of tobacco-containing products. Nicotine supports self-administration in rodents, although measures of its reinforcing effects are often confounded by procedures that are used to facilitate acquisition, such as food restriction, prior reinforcement training, or response-contingent co-delivery of a naturally reinforcing light. This study examined whether rats acquire nicotine self-administration in the absence of these facilitators. A new mathematical modeling procedure was used to define the criterion for acquisition and to determine dose-dependent differences in rate and asymptote levels of intake. Rats were trained across 20 daily 2-h sessions occurring 6 days/week in chambers equipped with active and inactive levers. Each active lever press resulted in nicotine reinforcement (0, 0.015, 0.03, 0.06 mg/kg, IV) and retraction of both levers for a 20-s time out, whereas inactive lever presses had no consequences. Acquisition was defined by the best fit of a logistic function (i.e., S-shaped) versus a constant function (i.e., flat line) for reinforcers obtained across sessions using a corrected Akaike information criterion (AICc) as a model selection tool. The results showed an inverted-U shaped function for dose in relation to the percentage of animals that acquired nicotine self-administration, with 46% acquiring at 0.015 mg/kg, 73% at 0.03 mg/kg, and 58% at 0.06 mg/kg. All saline rats failed to acquire as expected. For rats that acquired nicotine self-administration, multiple model comparisons demonstrated that the asymptote (highest number of reinforcers/session) and half learning point (h; session during which half the assymptote had been achieved) were justified as free parameters of the reinforcers/session function, indicating that these parameters vary with nicotine dose. Asymptote exhibited an inverted U-shaped function across doses and half learning point exhibited a negative relationship to dose (i.e., the higher the dose the fewer sessions to reach h). These findings suggest that some rats acquire nicotine self-administration without using procedures that confound measures of acquisition rate. Furthermore, the modeling approach provides a new way of defining acquisition of drug self-administration that takes advantage of using all data generated from individual subjects and is less arbitrary than some criteria that are currently used.

Contributors

Agent

Created

Date Created
2011

152507-Thumbnail Image.png

Electron Microscopy Study of the Phase Transformation and Metal Functionalization of Titanium Oxide Nanotubes

Description

Titanium oxide (TiO2), an abundant material with high photocatalytic activity and chemical stability is an important candidate for photocatalytic applications. The photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and morphology changes in TiO2

Titanium oxide (TiO2), an abundant material with high photocatalytic activity and chemical stability is an important candidate for photocatalytic applications. The photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and morphology changes in TiO2 nanotubes were studied using ex-situ and in-situ transmission electron microscopy (TEM). X-ray diffraction and scanning electron microscopy studies were also performed to understand the phase and morphology of the nanotubes. As prepared TiO2 nanotubes supported on Ti metal substrate were amorphous, during the heat treatment in the ex-situ furnace nanotubes transform to anatase at 450 oC and transformed to rutile when heated to 800 oC. TiO2 nanotubes that were heat treated in an in-situ environmental TEM, transformed to anatase at 400 oC and remain anatase even up to 800 oC. In both ex-situ an in-situ case, the morphology of the nanotubes drastically changed from a continuous tubular structure to aggregates of individual nanoparticles. The difference between the ex-situ an in-situ treatments and their effect on the phase transformation is discussed. Metal doping is one of the effective ways to improve the photocatalytic performance. Several approaches were performed to get metal loading on to the TiO2 nanotubes. Mono-dispersed platinum nanoparticles were deposited on the TiO2 nanopowder and nanotubes using photoreduction method. Photo reduction for Ag and Pt bimetallic nanoparticles were also performed on the TiO2 powders.

Contributors

Agent

Created

Date Created
2014

152510-Thumbnail Image.png

Understanding plasticity and fracture in aluminum alloys and their composites by 3D X-ray synchrotron tomography and microdiffraction

Description

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.

Contributors

Agent

Created

Date Created
2014

151978-Thumbnail Image.png

Asymmetries in interpersonal coordination: recruiting degrees-of-freedom stabilizes coordination

Description

The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect

The current paper presents two studies that examine how asymmetries during interpersonal coordination are compensated for. It was predicted that destabilizing effects of asymmetries are stabilized through the recruitment and suppression of motor degrees-of-freedom (df). Experiment 1 examined this effect by having participants coordinate line movements of different orientations. Greater differences in asymmetries between participants yielded greater spatial deviation, resulting in the recruitment of df. Experiment 2 examined whether coordination of movements asymmetrical in shape (circle and line) yield simultaneous recruitment and suppression of df. This experiment also tested whether the initial stability of the performed movement alters the amount of change in df. Results showed that changes in df were exhibited as circles decreasing in circularity and lines increasing in circularity. Further, more changes in df were found circular (suppression) compared to line (recruitment) movements.

Contributors

Agent

Created

Date Created
2013

151707-Thumbnail Image.png

Neural plasticity in lower- and higher-level visual cortex processing

Description

Perceptual learning by means of coherent motion training paradigms has been shown to produce plasticity in lower and higher-level visual systems within the human occipital lobe both supra- and subliminally. However, efficiency of training methods that produce consolidation in the

Perceptual learning by means of coherent motion training paradigms has been shown to produce plasticity in lower and higher-level visual systems within the human occipital lobe both supra- and subliminally. However, efficiency of training methods that produce consolidation in the visual system via coherent motion has yet to be experimentally determined. Furthermore, the effects of coherent motion training on reading comprehension, in clinical and normal populations, are still nascent. In the present study, 20 participants were randomly assigned to one of four experimental conditions. Two conditions had a participation requirement of four days while two conditions required eight days of participation. These conditions were further divided into 500 or 1000 trials per day (4 x 500, 4 x 1000, 8 x 500, 8 x 1000). Additional pre-test and post-test days were used to attain timed pre- and post-tests on the Wide Range Achievement Test IV (WRAT IV) reading comprehension battery. Furthermore, a critical flicker fusion threshold (CFFT) score was taken on a macular pigment densitometer on the pre-test and post-test day. Participants showed significant improvement in CFFT levels, WRAT IV reading comprehension, and speed of completion between pre-test and post-test; however, degree of improvement did not vary as a function of training condition. An interaction between training condition and degree of improvement was evident in coherent dot motion contrast scores, with significant training plasticity occurring in the 4 x 1000 and 8 x 500 conditions.

Contributors

Agent

Created

Date Created
2013

151721-Thumbnail Image.png

The effect of word frequency and dual tasks on memory for presentation frequency

Description

Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a

Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and error responses, reaction times, and accuracy. Accuracy and reaction times were analyzed in terms of memory load (task condition), number of repetitions, effect of high vs. low print-frequency, and correlations with working memory span. Multinomial tree analyses were also completed to investigate source vs. item memory and revealed a mirror effect in episodic memory experiments (source memory), but a frequency advantage in span tasks (item memory). Interestingly enough, we did not observe an advantage for high working memory span individuals in frequency judgments, even when participants split their attention during the dual task (similar to a complex span task). However, we concluded that both the amount of attentional resources allocated and prior experience with an item affect how it is stored in memory.

Contributors

Agent

Created

Date Created
2013

151930-Thumbnail Image.png

Neuromuscular control contributes to incidental learning: head orientation during visual statistical learning

Description

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning occurs. The goal of the present set of experiments is to determine if visual sequential information is learned in terms of abstract rules or stimulus-specific details. Two experiments test the extent to which interaction with the stimuli can influence the information that is encoded by the learner. The results of both experiments support the claim that stimulus and domain specific details directly shape what is learned, through a process of tuning the neuromuscular systems involved in the interaction between the learner and the materials.

Contributors

Agent

Created

Date Created
2013