Matching Items (5)
Filtering by

Clear all filters

137487-Thumbnail Image.png
Description
The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation study. This research seeks to determine the acquisition processes that contribute significantly to total simulated program time in the acquisition system for all programs reaching Milestone C. Specifically, this research examines the effect of increased scope management, technology maturity, and decreased variation and mean process times in post-Design Readiness Review contractor activities by performing additional simulation analyses. Potential policies are formulated from the results to further improve program acquisition completion time.
ContributorsWorger, Danielle Marie (Author) / Wu, Teresa (Thesis director) / Shunk, Dan (Committee member) / Wirthlin, J. Robert (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
137112-Thumbnail Image.png
Description
Abstract The purpose of this project is to utilize the models and concepts from Information Measurement Theory (IMT) to help minimize future decision making with respect to my career path. When I began this project, my future was clouded, my initial conditions were unknown, my stress over future career-path decisions

Abstract The purpose of this project is to utilize the models and concepts from Information Measurement Theory (IMT) to help minimize future decision making with respect to my career path. When I began this project, my future was clouded, my initial conditions were unknown, my stress over future career-path decisions was high, and I had eight possible career paths in mind. I have narrowed my career-path options from eight to four. In addition, I have determined a one-year plan that enables me to be prepared to pursue any of the four career paths that I have found align with me. In this project, I explored my dominant initial conditions with respect to my career path. I tracked the job history of my grandparents and parents. These efforts allowed me to identify the strengths and weaknesses that I was exhibiting by the age of three. Natural law dictates that the strengths and weaknesses of my younger self will be the same strengths and weakness that I excel at and struggle with today. I then used my understanding of natural law and the event model process to map the strengths and weaknesses of my parents and grandparents and to compare and contrast these to my strengths and weaknesses, including those that were apparent by the time that I was three years old. Focusing in on what I really want from a job, four main goals were established to grade the various future career-path options. Finally, I documented my transition from uncertainty to clarity. It began with my sobriety and ended with a milestone one-year plan that will give me information that I need to commit to my career path. This transition has had significant impact. The elusive "who am I" has been addressed, not completely but addressed sufficiently so that the question no longer plagues me. I know from where I have come. I have gained significant insight from those around me who know me. All of this has been documented for my own personal use, and for my children someday. This process permitted me to eliminate outliers from my eight original career paths, reducing them to four. In addition, application of IMT models and concepts has allowed me to see one year into the future. With my new-found knowledge, I will listen and watch the doors close on three of the remaining four career paths, as there is only one path I am meant to take.
ContributorsRichardson, Trevor Woods (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor) / Del E. Webb Construction (Contributor)
Created2014-05
134430-Thumbnail Image.png
Description
Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how expert chess players use their memory and skills to approach

Abstract Chess has been a common research topic for expert-novice studies and thus for learning science as a whole because of its limited framework and longevity as a game. One factor is that chess studies are good at measuring how expert chess players use their memory and skills to approach a new chessboard con�guration. Studies have shown that chess skill is based on memory, speci�cally, "chunks" of chess piece positions that have been previously encountered by players. However, debate exists concerning how these chunks are constructed in players' memory. These chunks could be constructed by proximity of pieces on the chessboard as well as their precise location or constructed through attack-defense relations. The primary objective of this study is to support which one is more in line with chess players' actual chess abilities based off their memory, proximity or attack/defense. This study replicates and extends an experiment conducted by McGregor and Howe (2002), which explored the argument that pieces are primed more by attack and defense relations than by proximity. Like their study, the present study examined novice and expert chess players' response times for correct and error responses by showing slides of game configurations. In addition to these metrics, the present study also incorporated an eye-tracker to measure visual attention and EEG to measure affective and cognitive states. They were added to allow the comparison of subtle and unconscious behaviors of both novices and expert chess players. Overall, most McGregor and Howe's (2002) results were replicated supporting their theory on chess expertise. This included statistically significance for skill in the error rates with the mean error rates on the piece recognition tests were 70.1% for novices and 87.9% for experts, as well as significance for the two-way interaction for relatedness and proximity with error rates of 22.4% for unrelated/far, 18.8% for related/far, 15.8% for unrelated
ear, and 29.3% for related
ear. Unfortunately, there were no statistically significance for any of the response time effects, which McGregor and Howe found for the interaction between skill and proximity. Despite eye-tracking and EEG data not either support nor confirm McGregor and Howe's theory on how chess players memorize chessboard configurations, these metrics did help build a secondary theory on how novices typically rely on proximity to approach chess and new visual problems in general. This was exemplified by the statistically significant results for short-term excitement for the two-way interaction of skill and proximity, where the largest short-term excitement score was between novices on near proximity slides. This may indicate that novices, because they may lean toward using proximity to try to recall these pieces, experience a short burst of excitement when the pieces are close to each other because they are more likely to recall these configurations.
ContributorsSeto, Christian Paul (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / Industrial, Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control grou

In this study, the implementation of educational technology and its effect on learning and user experience is measured. A demographic survey, pretest/posttest, and educational experience survey was used to collect data on the control and experimental groups. The experimental group was subjected to different learning material than the control group with the use of the Elements 4D mobile application by Daqri to learn basic chemical elements and compounds. The control group learning material provided all the exact information as the application, but in the 2D form of a printed packet. It was expected the experimental group would outperform the control group and have a more enjoyable experience and higher performance. After data analysis, it was concluded that the control group outperformed the experimental group on performance and both groups has similar experiences in contradiction to the hypothesis. Once the factors that contribute to the limitations of different study duration, learning the application beforehand, and only-memorization questions are addressed, the study can be conducted again. Application improvements may also alter the future results of the study and hopefully lead to full implementation into a curriculum.
ContributorsApplegate, Garrett Charles (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135786-Thumbnail Image.png
Description
The deductive logic and leadership techniques presented in Dr. Dean Kashiwagi's Information Measurement Theory (IMT) and the Kashiwagi Solution Model (KSM) provide the tools to implement positive change within one's life and environment. By altering the way that I perceive the world, I have made progress in self-improvement through action.

The deductive logic and leadership techniques presented in Dr. Dean Kashiwagi's Information Measurement Theory (IMT) and the Kashiwagi Solution Model (KSM) provide the tools to implement positive change within one's life and environment. By altering the way that I perceive the world, I have made progress in self-improvement through action. This project utilizes self-evaluation as a method to learn from dominant information and experience. In establishing that natural laws govern the world, there is no randomness; events and decisions are all cause-and-effect. When seen through this lens, life becomes simpler and manageable. Through my own implementation of IMT and KSM, I live a more productive lifestyle and feel that I have a meaningful plan for my future.
ContributorsRoot, Shawn Michael (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05