Matching Items (21)
Filtering by

Clear all filters

152061-Thumbnail Image.png
Description
Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit

Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit well with other work focusing on attention during and after category learning. The current work attempted to merge these two areas of by creating a category structure with the best chance to detect generalization. Participants learned order level bird categories and family level wading bird categories. Then participants completed multiple measures to test generalization to old wading bird categories, new wading bird categories, owl and raptor categories, and lizard categories. As expected, the generalization measures converged on a single overall pattern of generalization. No generalization was found, except for already learned categories. This pattern fits well with past work on generalization within a hierarchy, but do not fit well with theories of dimensional attention. Reasons why these findings do not match are discussed, as well as directions for future research.
ContributorsLancaster, Matthew E (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / Chi, Michelene (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
151930-Thumbnail Image.png
Description
Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning occurs. The goal of the present set of experiments is to determine if visual sequential information is learned in terms of abstract rules or stimulus-specific details. Two experiments test the extent to which interaction with the stimuli can influence the information that is encoded by the learner. The results of both experiments support the claim that stimulus and domain specific details directly shape what is learned, through a process of tuning the neuromuscular systems involved in the interaction between the learner and the materials.
ContributorsMarsh, Elizabeth R (Author) / Glenberg, Arthur M. (Thesis advisor) / Amazeen, Eric (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
154138-Thumbnail Image.png
Description
Theories of interval timing have largely focused on accounting for the aggregate properties of behavior engendered by periodic reinforcement, such as sigmoidal psychophysical functions and their scalar property. Many theories of timing also stipulate that timing and motivation are inseparable processes. Such a claim is challenged by fluctuations in and

Theories of interval timing have largely focused on accounting for the aggregate properties of behavior engendered by periodic reinforcement, such as sigmoidal psychophysical functions and their scalar property. Many theories of timing also stipulate that timing and motivation are inseparable processes. Such a claim is challenged by fluctuations in and out of states of schedule control, making it unclear whether motivation directly affects states related to timing. The present paper seeks to advance our understanding of timing performance by analyzing and comparing the distribution of latencies and inter-response times (IRTs) of rats in two fixed-interval (FI) schedules of food reinforcement (FI 30-s and FI 90-s), and in two levels of food deprivation. Computational modeling revealed that each component was well described by mixture probability distributions embodying two-state Markov chains. Analysis of these models revealed that only a subset of latencies are sensitive to the periodicity of reinforcement, and pre-feeding only reduces the size of this subset. The distribution of IRTs suggests that behavior in FI schedules is organized in bouts that lengthen and ramp up in frequency with proximity to reinforcement. Pre-feeding slowed down the lengthening of bouts and increased the time between bouts. When concatenated, these models adequately reproduced sigmoidal FI response functions. These findings suggest that behavior in FI fluctuates in and out of schedule control; an account of such fluctuation suggests that timing and motivation are dissociable components of FI performance. These mixture-distribution models also provide novel insights on the motivational, associative, and timing processes expressed in FI performance, which need to be accounted for by causal theories of interval timing.
ContributorsDaniels, Carter W (Author) / Sanabria, Federico (Thesis advisor) / Brewer, Gene (Committee member) / Wynne, Clive (Committee member) / Arizona State University (Publisher)
Created2015
136843-Thumbnail Image.png
Description
An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next

An introduction to neuroscientific thought aimed at an audience that is not educated in biology. Meant to be readable and easily understood by anyone with a high school education. The first section is completed in its entirety, with outlines for the proposed final sections to be completed over the next few years.
ContributorsNelson, Nicholas Alan (Author) / Olive, M. Foster (Thesis director) / Brewer, Gene (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05
132826-Thumbnail Image.png
Description
Although it has recently been demonstrated that source monitoring (SM) processes may mediate the relationship between working memory (WM) and false memories, little research has investigated whether the quality of monitoring processes can account for this reduction. In the current study, participants performed multiple false memory, WM, and SM tasks.

Although it has recently been demonstrated that source monitoring (SM) processes may mediate the relationship between working memory (WM) and false memories, little research has investigated whether the quality of monitoring processes can account for this reduction. In the current study, participants performed multiple false memory, WM, and SM tasks. Consistent with previous research, SM abilities mediated the relationship between WM and false memories (regardless of whether or not participants were warned of the illusions at encoding). High SM individuals were better able to recall contextual information from study to correctly reject lures, whereas low SM individuals were more likely to rely on the quality of retrieved details to reject lures. These results suggest that individuals low and high in SM abilities rely on qualitatively different monitoring processes to reduce errors, and that individual differences in diagnostic monitoring strategies may account for previous relationships found between WM and false memories.
ContributorsCoulson, Allison Rose (Author) / Brewer, Gene (Thesis director) / Ellis, Derek (Committee member) / Department of Psychology (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134052-Thumbnail Image.png
Description
It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of

It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of experiments, Carvalho & Goldstone (2013), demonstrated that a blocked presentation showed an advantage during learning, but that ultimately, the distributed presentation yielded better performance during a post-learning transfer test. However, we have identified a major methodological issue in this study that we believe contaminates the results in a way that leads to an inflation and misrepresentation of learning levels. The present study aimed to correct this issue and re-examine whether a blocked or distributed presentation enhances the learning and subsequent generalization of categories. We also introduced two shaping variables, category size and distortion level at transfer, in addition to the mode of presentation (blocked versus distributed). Results showed no significant differences of mode of presentation at either the learning or transfer phases, thus supporting our concern about the previous study. Additional findings showed benefits in learning categories with a greater category size, as well as higher classification accuracy of novel stimuli at lower-distortion levels.
ContributorsJacoby, Victoria Leigh (Author) / Homa, Donald (Thesis director) / Brewer, Gene (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134911-Thumbnail Image.png
Description
Working memory is the cognitive system responsible for storing and maintaining information in short-term memory and retrieving cues from long-term memory. Working memory capacity (WMC) is needed for goal maintenance and to ignore task-irrelevant stimuli (Engle & Kane, 2003). Emotions are one type of task-irrelevant stimuli that could distract an

Working memory is the cognitive system responsible for storing and maintaining information in short-term memory and retrieving cues from long-term memory. Working memory capacity (WMC) is needed for goal maintenance and to ignore task-irrelevant stimuli (Engle & Kane, 2003). Emotions are one type of task-irrelevant stimuli that could distract an individual from a task (Smallwood, Fitzgerald, Miles, & Phillips, 2009). There are studies that show there is a relation between emotions and working memory capacity. The direction of this relationship, though, is unclear (Kensinger, 2009). In this study, emotions served as a distractor and task performance was examined for differences in the effect of emotion depending on participants' working memory capacity. The participants watched a mood induction video, then were told to complete a complex-span working memory task. The mood induction was successful- participants watching the negative emotional video were in a less positive mood after watching the video than the participants that watched a neutral video. However, the results of the complex-span working memory task showed no significant difference in the results between participants in the negative versus neutral mood. These results may provide support to an alternative hypothesis: cognitive tasks can diminish the effects of emotions (Dillen, Heslenfeld, & Koole, 2009).
ContributorsAhmed, Sania (Author) / Brewer, Gene (Thesis director) / Wingert, Kimberly (Committee member) / Blais, Chris (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154453-Thumbnail Image.png
Description
The human body is a complex system comprised of many parts that can coordinate in a variety of ways to produce controlled action. This creates a challenge for researchers and clinicians in the treatment of variability in motor control. The current study aims at testing the utility of a

The human body is a complex system comprised of many parts that can coordinate in a variety of ways to produce controlled action. This creates a challenge for researchers and clinicians in the treatment of variability in motor control. The current study aims at testing the utility of a nonlinear analysis measure – the Largest Lyapunov exponent (1) – in a whole body movement. Experiment 1 examined this measure, in comparison to traditional linear measure (standard deviation), by having participants perform a sit-to-stand (STS) task on platforms that were either stable or unstable. Results supported the notion that the Lyapunov measure characterized controlled/stable movement across the body more accurately than the traditional standard deviation (SD) measure. Experiment 2 tested this analysis further by presenting participants with an auditory perturbation during performance of the same STS task. Results showed that both the Lyapunov and SD measures failed to detect the perturbation. However, the auditory perturbation may not have been an appropriate perturbation. Limitations of Experiment 2 are discussed, as well as directions for future study.
ContributorsGibbons, Cameron T (Author) / Amazeen, Polemnia G (Thesis advisor) / Amazeen, Eric (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2016
154307-Thumbnail Image.png
Description
Self-control has been shown to predict both health risk and health protective outcomes. Although top-down or “good” self-control is typically examined as a unidimensional construct, research on “poor” self-control suggests that multiple dimensions may be necessary to capture aspects of self-control. The current study sought to create a new brief

Self-control has been shown to predict both health risk and health protective outcomes. Although top-down or “good” self-control is typically examined as a unidimensional construct, research on “poor” self-control suggests that multiple dimensions may be necessary to capture aspects of self-control. The current study sought to create a new brief survey measure of top-down self-control that differentiates between self-control capacity, internal motivation, and external motivation. Items were adapted from the Brief Self-Control Scale (BSCS; Tangney, Baumeister, & Boone, 2004) and were administered through two online surveys to 347 undergraduate students enrolled in introductory psychology courses at Arizona State University. The Self-Control Motivation and Capacity Survey (SCMCS) showed strong evidence of validity and reliability. Exploratory and confirmatory factor analyses supported a 3-factor structure of the scale consistent with the underlying theoretical model. The final 15-item measure demonstrated excellent model fit, chi-square = 89.722 p=.077, CFI = .989, RMSEA = .032, SRMR = .045. Despite several limitations including the cross-sectional nature of most analyses, self-control capacity, internal motivation, and external motivation uniquely related to various self-reported behavioral outcomes, and accounted for additional variance beyond that accounted for by the BSCS. Future studies are needed to establish the stability of multiple dimensions of self-control, and to develop state-like and domain-specific measures of self-control. While more research in this area is needed, the current study demonstrates the importance of studying multiple aspects of top-down self-control, and may ultimately facilitate the tailoring of interventions to the needs of individuals based on unique profiles of self-control capacity and motivation.
ContributorsPapova, Anna (Author) / Corbin, William R. (Thesis advisor) / Karoly, Paul (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2016
155745-Thumbnail Image.png
Description
In this study, the oppositional processes theory was proposed to suggest that reliance on semantic and episodic memory systems hinder originality during idea generation for divergent thinking tasks that are generally used to assess creative potential. In order to investigate the proposed oppositional processes theory, three experiments that manipulated the

In this study, the oppositional processes theory was proposed to suggest that reliance on semantic and episodic memory systems hinder originality during idea generation for divergent thinking tasks that are generally used to assess creative potential. In order to investigate the proposed oppositional processes theory, three experiments that manipulated the memory accessibility in participants during the alternative uses tasks were conducted. Experiment 1 directly instructed participants to either generate usages based on memory or not from memory; Experiment 2 provided participants with object cues that were either very common or very rare in daily life (i.e., bottle vs. canteen); Experiment 3 replicated the same manipulation from Experiment 2 with much longer generation time (10 minutes in Experiment 2 vs. 30 minutes in Experiment 3). The oppositional processes theory predicted that participants who had less access to direct and unaltered usages (i.e., told to not use memory, were given rare cues, or were outputting items later in the generation period) during the task would be more creative. Results generally supported the predictions in Experiments 1 and 2 where participants from conditions which limited their access to memory generated more novel usages that were considered more creative by independent coders. Such effects were less prominent in Experiment 3 with extended generation time but the trends remained the same.
ContributorsXu, Dongchen (Author) / Brewer, Gene (Thesis advisor) / Glenberg, Arthur (Committee member) / Homa, Donald (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2017