Matching Items (4)

Filtering by

Clear all filters

133028-Thumbnail Image.png

Somatosensory Modulation during Speech Planning

Description

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor

Previous studies have found that the detection of near-threshold stimuli is decreased immediately before movement and throughout movement production. This has been suggested to occur through the use of the internal forward model processing an efferent copy of the motor command and creating a prediction that is used to cancel out the resulting sensory feedback. Currently, there are no published accounts of the perception of tactile signals for motor tasks and contexts related to the lips during both speech planning and production. In this study, we measured the responsiveness of the somatosensory system during speech planning using light electrical stimulation below the lower lip by comparing perception during mixed speaking and silent reading conditions. Participants were asked to judge whether a constant near-threshold electrical stimulation (subject-specific intensity, 85% detected at rest) was present during different time points relative to an initial visual cue. In the speaking condition, participants overtly produced target words shown on a computer monitor. In the reading condition, participants read the same target words silently to themselves without any movement or sound. We found that detection of the stimulus was attenuated during speaking conditions while remaining at a constant level close to the perceptual threshold throughout the silent reading condition. Perceptual modulation was most intense during speech production and showed some attenuation just prior to speech production during the planning period of speech. This demonstrates that there is a significant decrease in the responsiveness of the somatosensory system during speech production as well as milliseconds before speech is even produced which has implications for speech disorders such as stuttering and schizophrenia with pronounced deficits in the somatosensory system.

Contributors

Agent

Created

Date Created
2019-05

131919-Thumbnail Image.png

Speech Motor Learning Depends on Relevant Auditory Errors

Description

In the past, researchers have studied the elements of speech and how they work together in the human brain. Auditory feedback, an important aid in speech production, provides information to speakers and allows them to gain an understanding if the

In the past, researchers have studied the elements of speech and how they work together in the human brain. Auditory feedback, an important aid in speech production, provides information to speakers and allows them to gain an understanding if the prediction of their speech matches their production. The speech motor system uses auditory goals to determine errors in its auditory output during vowel production. We learn from discrepancies between our prediction and auditory feedback. In this study, we examined error assessment processes by systematically manipulating the correspondence between speech motor outputs and their auditory consequences while producing speech. We conducted a study (n = 14 adults) in which participants’ auditory feedback was perturbed to test their learning rate in two conditions. During the trials, participants repeated CVC words and were instructed to prolong the vowel each time. The adaptation trials were used to examine the reliance of auditory feedback and speech prediction by systematically changing the weight of auditory feedback. Participants heard their perturbed feedback through insert earphones in real time. Each speaker’s auditory feedback was perturbed according to task-relevant and task-irrelevant errors. Then, these perturbations were presented to subjects gradually and suddenly in the study. We found that adaptation was less extensive with task-irrelevant errors, adaptation did not saturate significantly in the sudden condition, and adaptation, which was expected to be extensive and faster in the task-relevant condition, was closer to the rate of adaptation in the task-irrelevant perturbation. Though adjustments are necessary, we found an efficient way for speakers to rely on auditory feedback more than their prediction. Furthermore, this research opens the door to future investigations in adaptation in speech and presents implications for clinical purposes (e.g. speech therapy).

Contributors

Agent

Created

Date Created
2020-05

147824-Thumbnail Image.png

The Effect of Transcranial Alternating Current Stimulation on Speech Motor Learning

Description

Speech motor learning is important for learning to speak during childhood and maintaining the speech system throughout adulthood. Motor and auditory cortical regions play crucial roles in speech motor learning. This experiment aimed to use transcranial alternating current stimulation, a

Speech motor learning is important for learning to speak during childhood and maintaining the speech system throughout adulthood. Motor and auditory cortical regions play crucial roles in speech motor learning. This experiment aimed to use transcranial alternating current stimulation, a neurostimulation technique, to influence auditory and motor cortical activity. In this study, we used an auditory-motor adaptation task as an experimental model of speech motor learning. Subjects repeated words while receiving formant shifts, which made the subjects’ speech sound different from their production. During the adaptation task, subjects received Beta (20 Hz), Alpha (10 Hz), or Sham stimulation. We applied the stimulation to the ventral motor cortex that is involved in planning speech movements. We found that the stimulation did not influence the magnitude of adaptation. We suggest that some limitations of the study may have contributed to the negative results.

Contributors

Agent

Created

Date Created
2021-05

134804-Thumbnail Image.png

Startle-evoked movement in multi-jointed, two-dimensional reaching tasks

Description

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.

Contributors

Agent

Created

Date Created
2016-12