Matching Items (8)
Filtering by

Clear all filters

149753-Thumbnail Image.png
Description
Molybdenum (Mo) is a key trace nutrient for biological assimilation of nitrogen, either as nitrogen gas (N2) or nitrate (NO3-). Although Mo is the most abundant metal in seawater (105 nM), its concentration is low (<5 nM) in most freshwaters today, and it was scarce in the ocean before 600

Molybdenum (Mo) is a key trace nutrient for biological assimilation of nitrogen, either as nitrogen gas (N2) or nitrate (NO3-). Although Mo is the most abundant metal in seawater (105 nM), its concentration is low (<5 nM) in most freshwaters today, and it was scarce in the ocean before 600 million years ago. The use of Mo for nitrogen assimilation can be understood in terms of the changing Mo availability through time; for instance, the higher Mo content of eukaryotic vs. prokaryotic nitrate reductase may have stalled proliferation of eukaryotes in low-Mo Proterozoic oceans. Field and laboratory experiments were performed to study Mo requirements for NO3- assimilation and N2 fixation, respectively. Molybdenum-nitrate addition experiments at Castle Lake, California revealed interannual and depth variability in plankton community response, perhaps resulting from differences in species composition and/or ammonium availability. Furthermore, lake sediments were elevated in Mo compared to soils and bedrock in the watershed. Box modeling suggested that the largest source of Mo to the lake was particulate matter from the watershed. Month-long laboratory experiments with heterocystous cyanobacteria (HC) showed that <1 nM Mo led to low N2 fixation rates, while 10 nM Mo was sufficient for optimal rates. At 1500 nM Mo, freshwater HC hyperaccumulated Mo intercellularly, whereas coastal HC did not. These differences in storage capacity were likely due to the presence in freshwater HC of the small molybdate-binding protein, Mop, and its absence in coastal and marine cyanobacterial species. Expression of the mop gene was regulated by Mo availability in the freshwater HC species Nostoc sp. PCC 7120. Under low Mo (<1 nM) conditions, mop gene expression was up-regulated compared to higher Mo (150 and 3000 nM) treatments, but the subunit composition of the Mop protein changed, suggesting that Mop does not bind Mo in the same manner at <1 nM Mo that it can at higher Mo concentrations. These findings support a role for Mop as a Mo storage protein in HC and suggest that freshwater HC control Mo cellular homeostasis at the post-translational level. Mop's widespread distribution in prokaryotes lends support to the theory that it may be an ancient protein inherited from low-Mo Precambrian oceans.
ContributorsGlass, Jennifer (Author) / Anbar, Ariel D (Thesis advisor) / Shock, Everett L (Committee member) / Jones, Anne K (Committee member) / Hartnett, Hilairy E (Committee member) / Elser, James J (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
154543-Thumbnail Image.png
Description
Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited to currently active systems and sensitive to atmospheric contamination. A different methodological approach requires appropriate analytical parameters for nitrogen analysis

Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited to currently active systems and sensitive to atmospheric contamination. A different methodological approach requires appropriate analytical parameters for nitrogen analysis in silicate glasses by secondary ion mass spectrometry (SIMS), which have not yet been established. To this end, we analyze various ion implanted basaltic and rhyolitic glasses by SIMS. We demonstrate that water content significantly affects the ion yields of 14N+ and 14N16O−, as well as the background intensity of 14N+ and 12C+. Application of implant-derived calibrations to natural samples provide the first reported concentrations of nitrogen in melt inclusions. These measurements are from samples from the Bishop Tuff in California, the Huckleberry Ridge Tuff of the Yellowstone Volcanic Center, and material from the Okaia and Oruanui eruptions in the Taupo Volcanic Center. In all studied material, we find maximum nitrogen contents of less than 45 ppm and that nitrogen concentration varies positively with CO2 concentration, which is interpreted to reflect partial degassing trend. Using the maximum measured nitrogen contents for each eruption, we find that the Bishop released >3.6 x 1013 g of nitrogen, the Huckleberry Ridge released >1.3 x 1014 g, the Okaia released >1.1 x 1011 g of nitrogen, the Oruanui released >4.7 x 1013 g of nitrogen. Simple calculations suggest that with concentrations such as these, rhyolitic eruptions may ephemerally increase the nitrogen flux to the atmosphere, but are insignificant compared to the 4 x 1021 g of nitrogen stored in the atmosphere.
ContributorsRegier, Margo Elaine (Author) / Hervig, Richard L (Thesis advisor) / Roggensack, Kurt (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2016
155051-Thumbnail Image.png
Description
Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which

Cities can be sources of nitrate to downstream ecosystems resulting in eutrophication, harmful algal blooms, and hypoxia that can have negative impacts on economies and human health. One potential solution to this problem is to increase nitrate removal in cities by providing locations where denitrification¬— a microbial process in which nitrate is reduced to N2 gas permanently removing nitrate from systems— can occur. Accidental urban wetlands– wetlands that results from human activities, but are not designed or managed for any specific outcome¬– are one such feature in the urban landscape that could help mitigate nitrate pollution through denitrification.

The overarching question of this dissertation is: how do hydrology, soil conditions, and plant patches affect patterns of denitrification in accidental urban wetlands? To answer this question, I took a three-pronged approach using a combination of field and greenhouse studies. First, I examined drivers of broad patterns of denitrification in accidental urban wetlands. Second, I used a field study to test if plant traits influence denitrification indirectly by modifying soil resources. Finally, I examined how species richness and interactions between species influence nitrate retention and patterns of denitrification using both a field study and greenhouse experiment.

Hydroperiod of accidental urban wetlands mediated patterns of denitrification in response to monsoon floods and plant patches. Specifically, ephemeral wetlands had patterns of denitrification that were largely unexplained by monsoon floods or plant patches, which are common drivers of patterns of denitrification in non-urban wetlands. Several plant traits including belowground biomass, above- and belowground tissue chemistry and rooting depth influenced denitrification indirectly by changing soil organic matter or soil nitrate. However, several other plant traits also had significant direct relationships with denitrification, (i.e. not through the hypothesized indirect relationships through soil organic matter or soil nitrate). This means these plant traits were affecting another aspect of soil conditions not included in the analysis, highlighting the need to improve our understanding of how plant traits influence denitrification. Finally, increasing species richness did not increase nitrate retention or denitrification, but rather individual species had the greatest effects on nitrate retention and denitrification.
ContributorsSuchy, Amanda Klara (Author) / Childers, Daniel L. (Thesis advisor) / Stromberg, Juliet C. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
149521-Thumbnail Image.png
Description

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic

More than half of all accessible freshwater has been appropriated for human use, and a substantial portion of terrestrial ecosystems have been transformed by human action. These impacts are heaviest in urban ecosystems, where impervious surfaces increase runoff, water delivery and stormflows are managed heavily, and there are substantial anthropogenic sources of nitrogen (N). Urbanization also frequently results in creation of intentional novel ecosystems. These "designed" ecosystems are fashioned to fulfill particular needs of the residents, or ecosystem services. In the Phoenix, Arizona area, the augmentation and redistribution of water has resulted in numerous component ecosystems that are atypical for a desert environment. Because these systems combine N loading with the presence of water, they may be hot spots of biogeochemical activity. The research presented here illustrates the types of hydrological modifications typical of desert cities and documents the extent and distribution of common designed aquatic ecosystems in the Phoenix metropolitan area: artificial lakes and stormwater retention basins. While both ecosystems were designed for other purposes (recreation/aesthetics and flood abatement, respectively), they have the potential to provide the added ecosystem service of N removal via denitrification. However, denitrification in urban lakes is likely to be limited by the rate of diffusion of nitrate into the sediment. Retention basins export some nitrate to groundwater, but grassy basins have higher denitrification rates than xeriscaped ones, due to higher soil moisture and organic matter content. An economic valuation of environmental amenities demonstrates the importance of abundant vegetation, proximity to water, and lower summer temperatures throughout the region. These amenities all may be provided by designed, water-intensive ecosystems. Some ecosystems are specifically designed for multiple uses, but maximizing one ecosystem service often entails trade-offs with other services. Further investigation into the distribution, bundling, and tradeoffs among water-related ecosystem services shows that some types of services are constrained by the hydrogeomorphology of the area, while for others human engineering and the creation of designed ecosystems has enabled the delivery of hydrologic ecosystem services independent of natural constraints.

ContributorsLarson, Elisabeth Knight (Author) / Grimm, Nancy (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Fisher, Stuart G. (Committee member) / Anderies, John M (Committee member) / Lohse, Kathleen A (Committee member) / Arizona State University (Publisher)
Created2010
168764-Thumbnail Image.png
Description
Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This

Nutrient rich agricultural runoff is a major source of phosphorus (P) and nitrogen (N) loading to surface waters, resulting in eutrophication and harmful algal blooms. The most effective nutrient removal technologies often have cost, land, or operational requirements that limits use in the decentralized areas that need it most. This dissertation investigated combined physical-chemical and microbiological technologies for combined P and N removal from nonpoint sources. Chapter 2 investigated the combination of basic oxygen furnace (BOF) steel slag and woody mulch for P removal by mineral precipitation and N removal by microbial denitrification. When combined with mulch in column experiments, slag with high fines content achieved complete P removal under unsaturated conditions. Batch experiments showed that microbial denitrification occurred under the highly alkaline conditions created by steel slag, but the timescale differential between P and N removal was a critical barrier to combining these treatment technologies. Chapter 3 evaluated a field-scale slag filter to treat agricultural tile drainage and lab-scale column experiments to provide insight on field conditions that impacted P removal. Increases in alkalinity had negative influences on P removal through inhibition of P mineral precipitation by BOF slag, while blast furnace (BF) steel slag was less impacted by alkalinity due to primarily adsorptive P removal. Regeneration strategies were identified based on water quality and slag type.Chapters 4 and 5 explored biological ion exchange (BIEX) as an option for addressing the timescale offset identified in Chapter 1. In Chapter 4 columns fed with dissolved organic matter (DOM) were not regenerated and over 50% DOM removal was observed, with the primary mechanism of removal identified as secondary ion exchange (SIEX) between sulfate and DOM fractions with high affinities for ion exchange. Chapter 5 aimed to expand BIEX to N treatment through batch denitrification and adsorption experiments, which revealed a positive relationship between molecular weight of organic molecules and their ability to displace nitrate. This work shows that by having an improved understanding of impacted water characteristics, the information presented in this work can be used to select and implement effective treatment technologies for decentralized areas.
ContributorsEdgar, Michael Garrett (Author) / Boyer, Treavor H (Thesis advisor) / Hamdan, Nasser (Committee member) / Delgado, Anca (Committee member) / Arizona State University (Publisher)
Created2022
157650-Thumbnail Image.png
Description

Nitrogen is an essential, often limiting, element for biological growth that can act as a pollutant if present in excess. Nitrogen is primarily transported by water from uplands to streams and eventually to recipient lakes, estuaries, and wetlands, but can be modulated by biological uptake and transformation along these flowpaths.

Nitrogen is an essential, often limiting, element for biological growth that can act as a pollutant if present in excess. Nitrogen is primarily transported by water from uplands to streams and eventually to recipient lakes, estuaries, and wetlands, but can be modulated by biological uptake and transformation along these flowpaths. As a result, nitrogen can accumulate in aquatic ecosystems if supply is high or if biological retention is low. Dryland and urban ecosystems offer interesting contrasts in water supply, which limits transport and biological activity in drylands, and nitrogen supply that increases with human activity. In my dissertation, I ask: What is the relative balance among nitrogen retention, removal, and transport processes in dryland watersheds, and what is the fate of exported nitrogen? My dissertation research demonstrates that water is a major control on where and when nitrogen is retained and removed versus exported to downstream ecosystems. I used a mass-balance model based on synoptic surveys to study seasonal and spatial patterns in nitrate loading to a dryland stream network. I found that irrigation diversions transport nitrate from agricultural areas to the stream network year-round, even during dry seasons, and are an important driver of nitrate loading. I further explored how seasonal precipitation influences flood nutrient export in an intermittent desert stream by coupling long-term data of flood-water chemistry with stream discharge and precipitation data. I found that higher precipitation prior to a flood fills water storage sites in the catchment, leading to larger floods. In addition, higher antecedent precipitation stimulates biological nitrogen retention in the uplands, leading to lower nitrogen concentration in floods. Finally, I evaluated the consequences of nitrogen export from watersheds on how urban wetlands attenuate nitrate through denitrification that permanently removes nitrogen, and dissimilatory nitrate reduction to ammonium (DNRA) that retains nitrogen in another biologically reactive form. I found that DNRA becomes proportionally more important with low nitrate concentration, thereby retaining nitrogen as ammonium. Collectively, my dissertation research addresses how dryland and urban ecosystems can be integrated into models of watershed nitrogen cycling.

ContributorsHandler, Amalia Marie Baiyor (Author) / Grimm, Nancy (Thesis advisor) / Helton, Ashley M (Committee member) / Hartnett, Hilairy E (Committee member) / Ruddell, Benjamin L (Committee member) / Arizona State University (Publisher)
Created2019
158096-Thumbnail Image.png
Description
This dissertation describes the synthesis and study of porous nanocarbon and further treatment by introducing nitrogen and oxygen groups on nanocarbon, which can be used as electrodes for energy storage (supercapacitor). Electron microscopy is used to make nanoscale characterization. ZnO nanowires are used as the template of the porous nanocarbon,

This dissertation describes the synthesis and study of porous nanocarbon and further treatment by introducing nitrogen and oxygen groups on nanocarbon, which can be used as electrodes for energy storage (supercapacitor). Electron microscopy is used to make nanoscale characterization. ZnO nanowires are used as the template of the porous nanocarbon, and nitrogen doping and oxidation treatment can help further increase the capacitive performance of the nanocarbon.

The first part of this thesis focuses on the synthesis of ZnO nanowires. Uniform ZnO nanowires with ~30 nm in width are produced at 1100℃ in a tube furnace with flowing gases (N2: 500 sccm; O2: 15 sccm). The temperature control is one of the most important parameters for making thin and ultra-long ZnO nanowires.

The second part of the thesis is about the synthesis of nanocarbons. Ultrapure ethanol is used as the carbon source to make carbonaceous deposition on ZnO nanowires. The thickness of the nanocarbons can be controlled by reaction temperature and reaction time. When the reaction time was controlled around 1h, the carbonaceous materials coating the ZnO nanowires become very thin. Then by flowing (1000 sccm) hydrogen at 750℃ through the reaction tube the ZnO nanowires are removed due to reduction and evaporation. Electrochemical evaluation of the produced nanocarbons shows that the nanocarbons possess very high specific surface area (>1400 m2/g) and a capacitance as high as 180 F/g at 10A/g in 6M KOH).

The third part of the thesis is the treatment of the as-synthesized nanocarbons to further increase capacitance. NH3 was used as the nitrogen source to react with nanocarbons at 700℃ to incorporate nitrogen group. Nitric acid (HNO3) is used as the oxidant to introduce oxygen groups. After proper nitrogen doping, the nitrogen doped nanocarbons can show high specific capacitance of 260 F/g at 1A/g in 6M KOH. After further oxidation treatment, the capacitance of the oxidized N-doped nanocarbons increased to 320 F/g at 1A/g in 6M KOH.
ContributorsZhang, Yizhi (Author) / Liu, Jingyue (Thesis advisor) / Wang, Qinghua (Committee member) / Deng, Shuguang (Committee member) / Arizona State University (Publisher)
Created2020
161499-Thumbnail Image.png
Description
Nitrogen removal and energy reduction in wastewater treatment are shared goals. Approaches to achieve those goals include the techniques of shortcut nitrogen removal utilizing nitrite shunt, biocatalyst, nitritation, deammonification, and simultaneous nitrification-denitrification. The practice of those techniques is newer in the industry of wastewater treatment but continues to develop, along

Nitrogen removal and energy reduction in wastewater treatment are shared goals. Approaches to achieve those goals include the techniques of shortcut nitrogen removal utilizing nitrite shunt, biocatalyst, nitritation, deammonification, and simultaneous nitrification-denitrification. The practice of those techniques is newer in the industry of wastewater treatment but continues to develop, along with the understanding of the biological and chemical activities that drive those processes. The kinetics and stoichiometry of traditional and shortcut nitrogen removal reactions are generally well understood to date. However, the thermodynamics of those processes are complex and deserve additional research to better understand the dominant factors that drive cell synthesis. Additionally, the implementation of nitrogen shortcut techniques can reduce the footprint of wastewater treatment processes that implement nitrogen removal by approximately 5 percent and can reduce operating costs by between 12 and 26 percent annually. Combined, nitrogen shortcut techniques can contribute to significant reduction in the long-term cost to operate, due to lower energy and consumable requirements, fast reaction times resulting in shorter solids retention times, and improvement efficiency in nitrogen removal from wastewater. This dissertation explores and defines the dominant factors that contribute to the success of efficiencies in traditional and shortcut nitrogen removal techniques, focusing on the natural microbiological processes. The culmination of these efforts was used to develop decision matrices to promote consideration of nitrogen shortcut techniques by practitioners during conceptual planning and design of wastewater treatment facilities.
ContributorsTack, Frederick Henry (Author) / Fox, Peter (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Abbaszadegan, Morteza (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2021