Matching Items (4)
Filtering by

Clear all filters

156630-Thumbnail Image.png
Description
Monitoring human exposure to chemicals posing public health threats is critically important for risk management and for informing regulatory actions. Chemical threats result from both environmental pollutants and elected substance use (e.g., consumption of drugs, alcohol and tobacco). Measuring chemical occurrence and concentrations in environmental matrices can help to pinpoint

Monitoring human exposure to chemicals posing public health threats is critically important for risk management and for informing regulatory actions. Chemical threats result from both environmental pollutants and elected substance use (e.g., consumption of drugs, alcohol and tobacco). Measuring chemical occurrence and concentrations in environmental matrices can help to pinpoint human exposure routes. For instance, indoor dust, a sink of indoor environmental contaminants, can serve to assess indoor air contamination and associated human exposures. Urban wastewater arriving at treatment plants contains urine and stool from the general population, the analysis of which can provide information on chemical threats in the community and ongoing harmful exposures. Analysis of sewage sludge can serve to reveal the identity and quantity of persistent organic pollutants in cities and inform estimates of toxic body burdens in local populations.

The objective of this dissertation was to investigate the occurrence and quantity of select, potentially harmful, anthropogenic chemicals in various environmental matrices and to explore the diagnostic value of analytical assays for informing public health decision-making. This dissertation (i) is the first to report spatio-temporal variations and estrogenic burdens of five parabens in sewage sludge from at the U.S. nationwide scale; (ii) represents the first China-wide survey to assess the occurrence and toxic emissions of parabens, triclosan, triclocarban, as well as triclocarban metabolites and transformation products contained in Chinese sewage sludge; (iii) documents the first use of a dispersive solid phase extraction method for indoor dust to measure dust-borne parabens, triclosan and triclocarban and estimating associated human exposures from dust ingestion; and (iv) is the first U.S. study to assess population-level alcohol and nicotine consumption in three U.S. communities using wastewater-based epidemiology (WBE). Obtained data on baseline levels of selected emerging contaminants in sewage sludge and indoor dust can serve to inform the future monitoring needs, risk assessment, and policy making. This work showcases the utility of WBE and urban metabolism metrology via dust and sewage sludge analysis to assess human behavior (e.g., drinking and smoking) and exposure risks more rapidly, efficiently and anonymously than traditional approaches can.
ContributorsChen, Jing (Author) / Halden, Rolf U. (Thesis advisor) / Borges, Chad R (Committee member) / Abbaszadegan, Morteza (Committee member) / Arizona State University (Publisher)
Created2018
154543-Thumbnail Image.png
Description
Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited to currently active systems and sensitive to atmospheric contamination. A different methodological approach requires appropriate analytical parameters for nitrogen analysis

Volcanic devolatilization is one of the major processes in the global nitrogen cycle. Past studies have often estimated the magnitude of this flux using volcanic emission measurements, which are limited to currently active systems and sensitive to atmospheric contamination. A different methodological approach requires appropriate analytical parameters for nitrogen analysis in silicate glasses by secondary ion mass spectrometry (SIMS), which have not yet been established. To this end, we analyze various ion implanted basaltic and rhyolitic glasses by SIMS. We demonstrate that water content significantly affects the ion yields of 14N+ and 14N16O−, as well as the background intensity of 14N+ and 12C+. Application of implant-derived calibrations to natural samples provide the first reported concentrations of nitrogen in melt inclusions. These measurements are from samples from the Bishop Tuff in California, the Huckleberry Ridge Tuff of the Yellowstone Volcanic Center, and material from the Okaia and Oruanui eruptions in the Taupo Volcanic Center. In all studied material, we find maximum nitrogen contents of less than 45 ppm and that nitrogen concentration varies positively with CO2 concentration, which is interpreted to reflect partial degassing trend. Using the maximum measured nitrogen contents for each eruption, we find that the Bishop released >3.6 x 1013 g of nitrogen, the Huckleberry Ridge released >1.3 x 1014 g, the Okaia released >1.1 x 1011 g of nitrogen, the Oruanui released >4.7 x 1013 g of nitrogen. Simple calculations suggest that with concentrations such as these, rhyolitic eruptions may ephemerally increase the nitrogen flux to the atmosphere, but are insignificant compared to the 4 x 1021 g of nitrogen stored in the atmosphere.
ContributorsRegier, Margo Elaine (Author) / Hervig, Richard L (Thesis advisor) / Roggensack, Kurt (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2016
161499-Thumbnail Image.png
Description
Nitrogen removal and energy reduction in wastewater treatment are shared goals. Approaches to achieve those goals include the techniques of shortcut nitrogen removal utilizing nitrite shunt, biocatalyst, nitritation, deammonification, and simultaneous nitrification-denitrification. The practice of those techniques is newer in the industry of wastewater treatment but continues to develop, along

Nitrogen removal and energy reduction in wastewater treatment are shared goals. Approaches to achieve those goals include the techniques of shortcut nitrogen removal utilizing nitrite shunt, biocatalyst, nitritation, deammonification, and simultaneous nitrification-denitrification. The practice of those techniques is newer in the industry of wastewater treatment but continues to develop, along with the understanding of the biological and chemical activities that drive those processes. The kinetics and stoichiometry of traditional and shortcut nitrogen removal reactions are generally well understood to date. However, the thermodynamics of those processes are complex and deserve additional research to better understand the dominant factors that drive cell synthesis. Additionally, the implementation of nitrogen shortcut techniques can reduce the footprint of wastewater treatment processes that implement nitrogen removal by approximately 5 percent and can reduce operating costs by between 12 and 26 percent annually. Combined, nitrogen shortcut techniques can contribute to significant reduction in the long-term cost to operate, due to lower energy and consumable requirements, fast reaction times resulting in shorter solids retention times, and improvement efficiency in nitrogen removal from wastewater. This dissertation explores and defines the dominant factors that contribute to the success of efficiencies in traditional and shortcut nitrogen removal techniques, focusing on the natural microbiological processes. The culmination of these efforts was used to develop decision matrices to promote consideration of nitrogen shortcut techniques by practitioners during conceptual planning and design of wastewater treatment facilities.
ContributorsTack, Frederick Henry (Author) / Fox, Peter (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Abbaszadegan, Morteza (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2021
161897-Thumbnail Image.png
Description
A novel technique for measuring heavy trace elements in geologic materials with secondary ion mass spectrometry (SIMS) is presented. This technique combines moderate levels of mass resolving power (MRP) with energy filtering in order to remove molecular ion interferences while maintaining enough sensitivity to measure trace elements. The technique was

A novel technique for measuring heavy trace elements in geologic materials with secondary ion mass spectrometry (SIMS) is presented. This technique combines moderate levels of mass resolving power (MRP) with energy filtering in order to remove molecular ion interferences while maintaining enough sensitivity to measure trace elements. The technique was evaluated by measuring a set of heavy chalcophilic elements in two sets of doped glasses similar in composition to rhyolites and basalts, respectively. The normalized count rates of Cu, As, Se, Br, and Te were plotted against concentrations to test that the signal increased linearly with concentration. The signal from any residual molecular ion interferences (e.g. ²⁹Si³⁰Si¹⁶O on ⁷⁵As) represented apparent concentrations ≤ 1 μg/g for most of the chalcophiles in rhyolitic matrices and between 1 and 10 μg/g in basaltic compositions. This technique was then applied to two suites of melt inclusions from the Bandelier Tuff: Ti-rich, primitive and Ti-poor, evolved rhyolitic compositions. The results showed that Ti-rich inclusions contained ~30 μg/g Cu and ~3 μg/g As while the Ti-poor inclusions contained near background Cu and ~6 μg/g As. Additionally, two of the Ti-rich inclusions contained > 5 μg/g of Sb and Te, well above background. Other elements were at or near background. This suggests certain chalcophilic elements may be helpful in unraveling processes relating to diversity of magma sources in large eruptions. Additionally, an unrelated experiment is presented demonstrating changes in the matrix effect on SIMS counts when normalizing against ³⁰Si⁺ versus ²⁸Si²⁺. If one uses doubly charged silicon as a reference, (common when using large-geometry SIMS instruments to study the light elements Li - C) it is important that the standards closely match the major element chemistry of the unknown.
ContributorsCarlson, Eric Norton (Author) / Hervig, Richard L (Thesis advisor) / Roggensack, Kurt (Committee member) / Burt, Donald M (Committee member) / Arizona State University (Publisher)
Created2021