Matching Items (20)

127819-Thumbnail Image.png

Future of Wastewater Sensing Workshop Guide

Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society,

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

Contributors

Agent

Created

Date Created
  • 2015-11-01

134978-Thumbnail Image.png

The Future of the Phoenix Metropolitan Area: An Analysis of the Socioeconomic Implications of Desert, Green, or Expanded Cities

Description

As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the

As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate change becomes more of an evident challenge, Arizona is forced to plan and make decisions regarding its ability to safely and efficiently maintain its livelihood and/or growth. With the effects of climate change in mind, Arizona will need to continue to innovatively and proactively address issues of water management and the effects of urban heat island (UHI). The objective of this thesis was to study the socioeconomic impacts of four extreme scenarios of the future Phoenix metropolitan area. Each of the scenarios showcased a different hypothetical extreme and uniquely impacted factors related to water management and UHI. The four scenarios were a green city, desert city, expanded city into desert land, and expanded city into agricultural land. These four scenarios were designed to emphasize different aspects of the urban water-energy-population nexus, as the future of the Phoenix metropolitan area is dynamic. Primarily, the Green City and Desert City served as contrasting viewpoints on UHI and water sustainability. The Expanded Cities showed the influence of population growth and land use on water sustainability. The socioeconomic impacts of the four scenarios were then analyzed. The quantitative data of the report was completed using the online user interface of WaterSim 5.0 (a program created by the Decision Center for a Desert City (DCDC) at Arizona State University). The different scenarios were modeled in the program by adjusting various demand and supply oriented factors. The qualitative portion as well as additional quantitative data was acquired through an extensive literature review. It was found that changing land use has direct water use implications; agricultural land overtaken for municipal uses can sustain a population for longer. Though, removing agricultural lands has both social and economic implications, and can actually cause the elimination of an emergency source. Moreover, it was found that outdoor water use and reclaimed wastewater can impact water sustainability. Practices that decrease outdoor water use and increase wastewater reclamation are currently occurring; however, these practices could be augmented. Both practices require changes in the publics' opinions on water use, nevertheless, the technology and policy exists and can be intensified to become more water sustainable. While the scenarios studied were hypothetical cases of the future of the Phoenix metropolitan area, they identified important circumscribing measures and practices that influence the Valley's water resources.

Contributors

Created

Date Created
  • 2016-12

131157-Thumbnail Image.png

Surveilling United States Sewage Sludge for Genetic Evidence of Genomoviridae & Microviridae Populations

Description

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.

Contributors

Agent

Created

Date Created
  • 2020-05

131736-Thumbnail Image.png

Narcotics Consumption Trends at a Southwestern U.S. University Campus in 2017-2018 Tracked By Wastewater-Based Epidemiology

Description

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness

Current methods measuring the consumption of prescription and illicit drugs are often hampered by innate limitations, the data is slow and often restricted, which can impact the relevance and robustness of the associated data. Here, wastewater-based epidemiology (WBE) was applied as an alternative metric to measure trends in the consumption of twelve narcotics within a collegiate setting from January 2018 to May 2018 at a Southwestern U.S. university. The present follow-up study was designed to identify potential changes in the consumption patterns of prescription and illicit drugs as the academic year progressed. Samples were collected from two sites that capture nearly 100% of campus-generated wastewater. Seven consecutive 24-hour composite raw wastewater samples were collected each month (n = 68) from both locations. The study identified the average consumption of select narcotics, in units of mg/day/1000 persons in the following order: cocaine (528 ± 266), heroin (404 ± 315), methylphenidate (343 ± 396), amphetamine (308 ±105), ecstasy (MDMA; 114 ± 198), oxycodone (57 ± 28), methadone (58 ± 73), and codeine (84 ± 40). The consumption of oxycodone, methadone, heroin, and cocaine were identified as statistically lower in the Spring 2018 semester compared to the Fall 2017. Universities may need to increase drug education for the fall semester to lower the consumption of drugs in that semester. Data from this research encompasses both human health and the built environment by evaluating public health through collection of municipal wastewater, allowing public health officials rapid and robust narcotic consumption data while maintaining the anonymity of the students, faculty, and staff.

Contributors

Agent

Created

Date Created
  • 2020-05

131610-Thumbnail Image.png

Monitoring the Rise of Methamphetamine use Amidst the Opioid Epidemic in Two U.S. Cities via Wastewater-based Epidemiology

Description

The combined use of methamphetamine and opioids has been reported to be on the rise throughout the United States (U.S.). However, our knowledge of this phenomenon is largely based upon

The combined use of methamphetamine and opioids has been reported to be on the rise throughout the United States (U.S.). However, our knowledge of this phenomenon is largely based upon reported overdoses and overdose-related deaths, law enforcement seizures, and drug treatment records; data that are often slow, restricted, and only track a portion of the population participating in drug consumption activities. As an alternative, wastewater-based epidemiology (WBE) has the capability to track licit and illicit drug trends within an entire community, at a low cost and in near real-time, while providing anonymity to those contributing to the sewer shed. In this study, wastewater was collected from two Midwestern U.S. cities (2017-2019) and analyzed for the prevalence of methamphetamine and the opioids oxycodone, codeine, fentanyl, tramadol, hydrocodone, and hydromorphone. Monthly 24-hour time-weighted composite samples (n = 48) from each city were analyzed using isotope dilution liquid chromatography tandem mass spectrometry. Results showed that methamphetamine and total opioid consumption (milligram morphine equivalents) in City 1 were strongly correlated only in 2017 (Spearman rank order correlation coefficient, ρ = 0.78), the relationship driven by fentanyl, hydrocodone, and hydromorphone. For City 2, methamphetamine and total opioid consumption were strongly positively correlated during the entire study (ρ = 0.54), with the correlations driven by hydrocodone and hydromorphone. In both cities, hydrocodone and hydromorphone mass loads were highly correlated, suggesting a parent and metabolite relationship. WBE provides important insights into licit and illicit drug consumption patterns in near real-time as they evolve; important information for community stakeholders in municipalities across the U.S.

Contributors

Agent

Created

Date Created
  • 2020-05

135272-Thumbnail Image.png

Characterizing Buffers to Maximize Peroxide Production in the Cathode Chamber of Microbial Fuel Cells

Description

Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to

Microbial fuel cells (MFCs) facilitate the conversion of organic matter to electrical current to make the total energy in black water treatment neutral or positive and produce hydrogen peroxide to assist the reuse of gray water. This research focuses on wastewater treatment at the U.S. military forward operating bases (FOBs). FOBs experience significant challenges with their wastewater treatment due to their isolation and dangers in transporting waste water and fresh water to and from the bases. Even though it is theoretically favorable to produce power in a MFC while treating black water, producing H2O2 is more useful and practical because it is a powerful cleaning agent that can reduce odor, disinfect, and aid in the treatment of gray water. Various acid forms of buffers were tested in the anode and cathode chamber to determine if the pH would lower in the cathode chamber while maintaining H2O2 efficiency, as well as to determine ion diffusion from the anode to the cathode via the membrane. For the catholyte experiments, phosphate and bicarbonate were tested as buffers while sodium chloride was the control. These experiments determined that the two buffers did not lower the pH. It was seen that the phosphate buffer reduced the H2O2 efficiency significantly while still staying at a high pH, while the bicarbonate buffer had the same efficiency as the NaCl control. For the anolyte experiments, it was shown that there was no diffusion of the buffers or MFC media across the membrane that would cause a decrease in the H2O2 production efficiency.

Contributors

Agent

Created

Date Created
  • 2016-05

135296-Thumbnail Image.png

Continuous Hydrogen Peroxide Production using Microbial Electrochemical Cells

Description

Alternative ion exchange membranes for implementation in a peroxide production microbial electrochemical cel (PP-MEC) are explored through membrane stability tests with NaCl electrolyte and stabilizer EDTA at varying operational pHs.

Alternative ion exchange membranes for implementation in a peroxide production microbial electrochemical cel (PP-MEC) are explored through membrane stability tests with NaCl electrolyte and stabilizer EDTA at varying operational pHs. PP-MEC performance parameters \u2014 H2O2 concentration, current density, coulombic efficiency and power input required \u2014 are optimized over a 7 month continuous operation period based on their response to changes in HRT, EDTA concentration, air flow rate and electrolyte. I found that EDTA was compatible for use with the membranes. I also determined that AMI membranes were preferable to CMI and FAA because it was consistently stable and maintained its structural integrity. Still, I suggest testing more membranes because the AMI degraded in continuous operation. The PP-MEC produced up to 0.38 wt% H2O2, enough to perform water treatment through the Fenton process and significantly greater than the 0.13 wt% batch PP-MEC tests by previous researchers. It ran at > 0.20 W-hr/g H2O2 power input, ~ three orders of magnitude less than what is required for the anthraquinone process. I recommend high HRT and EDTA concentration while running the PP- MEC to increase H2O2 concentration, but low HRT and low EDTA concentration to decrease power input required. I recommend NaCl electrolyte but suggest testing new electrolytes that may control pH without degrading H2O2. I determined that air flow rate has no effect on PP-MEC operation. These recommendations should optimize PP-MEC operation based on its application.

Contributors

Agent

Created

Date Created
  • 2016-05

135239-Thumbnail Image.png

Nitrate and Selenate Microbial Reduction in the Membrane Biofilm Reactor for Artificial Mining Wastewater

Description

Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into

Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into Se°. The Membrane Biofilm Reactor (MBfR) utilizes biofilm communities on the surface of hollow-fiber membranes to transform oxidized water contaminants into innocuous reduced products. For this project, I set up two MBfRs in a lead and lag configuration to reduce NO3- [input at ~40-45 mg NO3-N/L] and SeO42- [0.62 mg/L], while avoiding sulfate (SO42-) [~1600-1660 mg/L] reduction. Over the course of three experimental phases, I controlled two operating conditions: the applied hydrogen pressure and the total electron acceptor loading. NO3- in the lead MBfR showed average reductions of 50%, 94%, and 91% for phases I, II, and III, respectively. In the lag MBfR, NO3- was reduced by 40%, 96%, and 100% for phases I, II, and III. NO2- was formed in Stage I when NO3- was not reduced completely; nevertheless NO2- accumulation was absent for the remainder of operation. In the lead MBfR, SeO42- was reduced by 65%, 87%, and 50% for phases I, II, and III. In the lag MBfR, SeO42- was reduced 60%, 27%, and 23% for phases I, II, and III. SO42- was not reduced in either MBfR. Biofilm communities were composed of denitrifying bacteria Rhodocyclales and Burkholderiales, Dechloromonas along with the well-known SeO42--reducing Thauera were abundant genera in the biofilm communities. Although SO42- reduction was suppressed, sulfate-reducing bacteria were present in the biofilm. To optimize competition for electron donor and space in the biofilm, optimal operational conditions were hydrogen pressures of 26 and 7 psig and total electron acceptor loading of 3.8 and 3.4 g H2/m2 day for the lead and lag MBfR, respectively.

Contributors

Created

Date Created
  • 2016-05

136591-Thumbnail Image.png

A Sustainable Approach to Wastewater Treatment Using Microbial Fuel Cells with Peroxide Production

Description

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy

Microbial fuel cells (MFCs) promote the sustainable conversion of organic matter in black water to electrical current, enabling the production of hydrogen peroxide (H2O2) while making waste water treatment energy neutral or positive. H2O2 is useful in remote locations such as U.S. military forward operating bases (FOBs) for on-site tertiary water treatment or as a medical disinfectant, among many other uses. Various carbon-based catalysts and binders for use at the cathode of a an MFC for H2O2 production are explored using linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) techniques. The oxygen reduction reaction (ORR) at the cathode has slow kinetics at conditions present in the MFC, making it important to find a catalyst type and loading which promote a 2e- (rather than 4e-) reaction to maximize H2O2 formation. Using LSV methods, I compared the cathodic overpotentials associated with graphite and Vulcan carbon catalysts as well as Nafion and AS-4 binders. Vulcan carbon catalyst with Nafion binder produced the lowest overpotentials of any binder/catalyst combinations. Additionally, I determined that pH control may be required at the cathode due to large potential losses caused by hydroxide (OH-) concentration gradients. Furthermore, RRDE tests indicate that Vulcan carbon catalyst with a Nafion binder has a higher H2O2 production efficiency at lower catalyst loadings, but the trade-off is a greater potential loss due to higher activation energy. Therefore, an intermediate catalyst loading of 0.5 mg/cm2 Vulcan carbon with Nafion binder is recommended for the final MFC design. The chosen catalyst, binder, and loading will maximize H2O2 production, optimize MFC performance, and minimize the need for additional energy input into the system.

Contributors

Agent

Created

Date Created
  • 2015-05

130848-Thumbnail Image.png

Optimization of Cathodes in Microbial Fuel Cells for the Production of Electrical Energy

Description

Optimizing cathodes for microbial fuel cells is important to maximize energy harvested from wastewater. Cathodes were made by modifying a recipe from previous literature and testing the current of the

Optimizing cathodes for microbial fuel cells is important to maximize energy harvested from wastewater. Cathodes were made by modifying a recipe from previous literature and testing the current of the cathode using linear sweep voltammetry. The cathodes contained an Fe-N-C catalyst combined with a Polytetrafluoroethylene binder. Optimizing the power resulting from the microbial fuel cells will help MFCs be an alternative energy source to fossil fuels. The new cathodes did improve in current production from −16 𝐴/𝑚 to −37 𝐴/𝑚 at -0.4 V. When fitted using a Butler-Volmer model, the cathode linear-sweep voltammograms did not follow the expected exponential trend. These results show a need for more research on the cathodes and the Butler-Volmer model, and they also show that the cathode is ready for further and longer application in a microbial fuel cell.

Contributors

Created

Date Created
  • 2021-05