Matching Items (3)
152202-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission

This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.
ContributorsRuggiero, John (Author) / Heydt, Gerald T (Thesis advisor) / Datta, Rajib (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
153184-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy

This thesis addresses the issue of making an economic case for bulk energy storage in the Arizona bulk power system. Pumped hydro energy storage (PHES) is used in this study. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load (store energy when it is inexpensive [energy demand is low] and discharge energy when it is expensive [energy demand is high]). It also has the potential to provide opportunities to avoid transmission and generation expansion, and provide for generation reserve margins. As the level of renewable energy resources increases, the uncertainty and variability of wind and solar resources may be improved by bulk energy storage technologies.

For this study, the MATLab software platform is used, a mathematical based modeling language, optimization solvers (specifically Gurobi), and a power flow solver (PowerWorld) are used to simulate an economic dispatch problem that includes energy storage and transmission losses. A program is created which utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona portion of the Western Electricity Coordinating Council (WECC) system. Actual data from industry are used in this test bed. In this thesis, the full capabilities of Gurobi are not utilized (e.g., integer variables, binary variables). However, the formulation shown here does create a platform such that future, more sophisticated modeling may readily be incorporated.

The developed software is used to assess the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization outputs such as the system wide operating costs. Large levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.

The thesis builds on the work of another recent researcher with the objectives of strengthening the assumptions used, checking the solutions obtained, utilizing higher level simulation languages to affirm results, and expanding the results and conclusions.

One important point not fully discussed in the present thesis is the impact of efficiency in the pumped hydro cycle. The efficiency of the cycle for modern units is estimated at higher than 90%. Inclusion of pumped hydro losses is relegated to future work.
ContributorsDixon, William Jesse J (Author) / Heydt, Gerald T (Thesis advisor) / Hedman, Kory W (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
Description
Before the rise in renewable energy, few people considered the consequences of adding large amounts of intermittent power onto the grid. As renewable energy has become more prevalent, utility companies must adapt their business practices to accommodate these unique sources of power. This is leading to challenges on how best

Before the rise in renewable energy, few people considered the consequences of adding large amounts of intermittent power onto the grid. As renewable energy has become more prevalent, utility companies must adapt their business practices to accommodate these unique sources of power. This is leading to challenges on how best to manage a grid with large amounts of renewable power. Arizona Public Service (APS), the largest electricity provider in the state of Arizona, has more than 70,000 distributed solar customers on their grid and the number of solar customers increases every day. With this increase in distributed solar customers comes the solar duck curve—the phenomenon whereby solar produces energy during times of low demand. However, with the use of storage, the duck curve problem may be mitigated. This project examines the sustainability of three storage options: pumped hydro energy storage, compressed air energy storage, and lithium-ion batteries. Using several sustainability indicators, this project makes a policy recommendation to APS on the most sustainable choice for large-scale energy storage. This project found that compressed air energy storage was the most sustainable option for APS. This considered the impacts of compressed air on the environment, communities, and the costs of this storage option. One important aspect to acknowledge regarding this technology is that in its current form, it does emit some carbon emissions. However, the carbon emissions may have less of an impact if this storage facility can allow APS to use its renewable energy assets most efficiently and continue to use energy from Palo Verde, the nuclear facility in Arizona.
ContributorsRood, Devon (Author) / Romito, Marc (Contributor)
Created2018-04-25