Matching Items (2)
Filtering by

Clear all filters

156133-Thumbnail Image.png
Description
Guided by cognitive, socio-cognitive, and socio-cultural learning theories, large-scale studies over multiple semesters, multiple instructors and at two different institutions have been performed in order to understand the factors that contribute to student performance in general organic chemistry. Students’ cognitive abilities were assessed in a new way based on a

Guided by cognitive, socio-cognitive, and socio-cultural learning theories, large-scale studies over multiple semesters, multiple instructors and at two different institutions have been performed in order to understand the factors that contribute to student performance in general organic chemistry. Students’ cognitive abilities were assessed in a new way based on a categorization of problem types in a standard organic chemistry curriculum. Problem types that required higher cognitive load were found to be more predictive of overall course performance. However, student performance on high cognitive load problems was different when compared in terms of non-cognitive factors, e.g. whether they were pre-health students or not. These results suggested that organic chemistry performance may be significantly influenced by non-cognitive factors. Students’ motivation and related self-regulation factors were then studied using an instrument specifically designed for general organic chemistry, the Organic Chemistry Motivation Survey. Of all the factors examined, self-efficacy was found to be the most significant predictor of performance. Socio-cultural factors were also studied using a newly developed instrument for measuring college students’ cultural and social capital, the Science Capital Questionnaire (SCQ). Of the different socio-cultural variables measured by the SCQ, students’ social connections in college were found to be most predictive of organic chemistry performance. Finally, cognitive and socio-cognitive variables were studied together in the context of gender differences in organic chemistry. Females were found to underperform in comparison to the males. This gap was found to be alarmingly large on the basis of final letter grade, in some semesters the percentage of males earning an A grade was twice as large as that for females. Spatial ability was not a factor that contributed to this difference, nor was the gender of the instructor. Instead, self-efficacy was found to be both significantly different between males and females, and also the factor that connected most strongly to course performance. It is suggested that sociocultural factors be the subject of further study in college science courses.
ContributorsAustin, Ara Cho (Author) / Gould, Ian R. (Thesis advisor) / Atkinson, Robert K. (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2018
157096-Thumbnail Image.png
Description
The construction industry has been growing over the past few years, but it is facing numerous challenges, related to craft labor availability and declining productivity. At the same time, the industry has benefited from computational advancements by leveraging the use of Building Information Modeling (BIM) to create information rich 3D

The construction industry has been growing over the past few years, but it is facing numerous challenges, related to craft labor availability and declining productivity. At the same time, the industry has benefited from computational advancements by leveraging the use of Building Information Modeling (BIM) to create information rich 3D models to enhance the planning, designing, and construction of projects. Augmented Reality (AR) is one technology that could further leverage BIM, especially on the construction site. This research looks at the human performance attributes enabled using AR as the main information delivery tool in the various stages of construction. The results suggest that using AR for information delivery can enhance labor productivity and enable untrained personnel to complete key construction tasks. However, its usability decreases when higher accuracy levels are required. This work contributes to the body of knowledge by empirically testing and validating the performance effects of using AR during construction tasks and highlights the limitations of current generation AR technology related to the construction industry. This work serves as foundation of future industry-based AR applications and research into potential AR implementations.
ContributorsChalhoub, Jad M (Author) / Ayer, Steven K. (Thesis advisor) / Ariaratnam, Samuel T. (Committee member) / Atkinson, Robert K. (Committee member) / Arizona State University (Publisher)
Created2019