Matching Items (1)
Filtering by

Clear all filters

158802-Thumbnail Image.png
Description
The first part of this dissertation reports the study of the vertical carrier transport and device application in InAs/InAs1-xSbx strain-balanced type-II superlattice. It is known that the low hole mobility in the InAs/InAs1-xSbx superlattice is considered as the main reason for the low internal quantum efficiency of its mid-wave and

The first part of this dissertation reports the study of the vertical carrier transport and device application in InAs/InAs1-xSbx strain-balanced type-II superlattice. It is known that the low hole mobility in the InAs/InAs1-xSbx superlattice is considered as the main reason for the low internal quantum efficiency of its mid-wave and long-wave infrared photodetectors, compared with that of its HgCdTe counterparts. Optical measurements using time-resolved photoluminescence and steady-state photoluminescence spectroscopy are implemented to extract the diffusion coefficients and mobilities of holes in the superlattices at various temperatures from 12 K to 210 K. The sample structure consists of a mid-wave infrared superlattice absorber region grown atop a long-wave infrared superlattice probe region. An ambipolar diffusion model is adopted to extract the hole mobility. The results show that the hole mobility first increases from 0.2 cm2/Vs at 12 K and then levels off at ~50 cm2/Vs as the temperature exceeds ~60 K. An InAs/InAs1-xSbx type-II superlattice nBn long-wavelength barrier infrared photodetector has also been demonstrated with a measured dark current density of 9.5×10-4 A/cm2 and a maximum resistance-area product of 563 Ω-cm2 at 77 K under a bias of -0.5 V. The Arrhenius plot of the dark current density reveals a possible high-operating-temperature of 110 K.The second part of the dissertation reports a lift-off technology using a water-soluble sacrificial MgTe layer grown on InSb. This technique enables the seamless integration of materials with lattice constants near 6.5 Å, such as InSb, CdTe, PbTe, HgTe and Sn. Coherently strained MgTe with a lattice constant close to 6.5 Å acts as a sacrificial layer which reacts with water and releases the film above it. Freestanding CdTe/MgxCd1-xTe double-heterostructures resulting from the lift-off process show increased photoluminescence intensity due to enhanced extraction efficiency and photon-recycling effect. The lifted-off thin films show smooth and flat surfaces with 6.7 Å root-mean-square roughness revealed by atomic-force microscopy profiles. The increased photoluminescence intensity also confirms that the CdTe/MgxCd1-xTe double-heterostructures maintain the high optical quality after epitaxial lift-off.
ContributorsTsai, Cheng-Ying (Author) / Zhang, Yong-Hang YZ (Thesis advisor) / Vasileska, Dragica DV (Committee member) / Johnson, Shane SJ (Committee member) / Zhao, Yuji YZ (Committee member) / Arizona State University (Publisher)
Created2020