Matching Items (2)
Filtering by

Clear all filters

136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135698-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a

Traumatic brain injury (TBI) is a leading cause of injury related death in the United States. The complexity of the injury environment that follows TBI creates an incomplete understanding of all the mechanisms in place to regulate chemotactic responses to TBI. The goal of this project was to develop a predictive in silco model using diffusion and autocrine/paracrine signaling specific to stromal cell derived factor-1α (SDF-1α) gradient formation after TBI and compare this model with in vivo experimental data. A COMSOL model using Fickian diffusion and autocrine/paracrine reaction terms was generated to predict the gradient formation observed in vivo at three physiologically relevant time points (1, 3, and 7 days). In vivo data was gathered and analyzed via immunohistochemistry and MATLAB. The spatial distribution of SDF-1α concentration in vivo more consistently demonstrated patterns similar to the in silico model dependent on both diffusion and autocrine/paracrine reaction terms rather than diffusion alone. The temporal distribution of these same results demonstrated degradation of SDF-1α at too rapid a rate, compared to the in vivo results. To account for differences in behavior observed in vivo, reaction terms and constants of 1st-order reaction rates must be modulated to better reflect the results observed in vivo. These results from both the in silico model and in vivo data support the hypothesis that SDF-1α gradient formation after TBI depends on more than diffusion alone. Future work will focus on improving the model with constants that are specific to SDF-1α as well as testing methods to better control the degradation of SDF-1α.
ContributorsFreeman, Sabrina Louise (Author) / Stabenfeldt, Sarah (Thesis director) / Caplan, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05