Matching Items (3)
Filtering by

Clear all filters

134932-Thumbnail Image.png
Description
This thesis focuses on the effects of an engine's induction and exhaust systems on vehicle fuel efficiency, along with the challenges accompanying improvement of this parameter. The aim of the project was to take an unconventional approach by investigating potential methods of increasing fuel economy via change of these systems

This thesis focuses on the effects of an engine's induction and exhaust systems on vehicle fuel efficiency, along with the challenges accompanying improvement of this parameter. The aim of the project was to take an unconventional approach by investigating potential methods of increasing fuel economy via change of these systems outside the engine, as finding substantial gains via this method negates the need to alter engine architectures, potentially saving manufacturers research and development costs. The ultimate goal was to determine the feasibility of modifying induction and exhaust systems to increase fuel efficiency via reduction of engine pumping losses and increase in volumetric efficiency, with the hope that this research can aid others researching engine design in both educational and commercial settings. The first step toward achieving this goal was purchasing a test vehicle and performing experimental fuel efficiency testing on the unmodified, properly serviced specimen. A test route was devised to provide for a well-rounded fuel efficiency measurement for each trial. After stock vehicle trials were completed, the vehicle was to be taken out of service for a turbocharger system installation; unfortunately, challenges arose that could not be rectified within the project timeframe, and this portion of the project was aborted, to be investigated in the future. This decision was made after numerous fitment and construction issues with prefabricated turbo conversion parts were found, including induction and exhaust pipe size problems and misalignments, kit component packaging issues such as intercooler dimensions being too large, as well as manufacturing oversights, like failure to machine flanges flat for sealing and specification of incorrect flange sizes for mating components. After returning the vehicle to stock condition by removing the partially installed turbocharger system, the next step in the project was then installation of high-flow induction and exhaust systems on the test vehicle, followed by fuel efficiency testing using the same procedure as during the first portion of the experiment. After analysis of the quantitative and qualitative data collected during this thesis project, several conclusions were made. First, the replacement of stock intake and exhaust systems with high-flow variants did make for a statistically significant increase in fuel efficiency, ranging between 10 and 20 percent on a 95% confidence interval. Average fuel efficiency of the test vehicle rose from 21.66 to 24.90 MPG, an impressive increase considering the relative simplicity of the modifications. The tradeoff made was in noise produced by the vehicle; while the high-flow induction system only resulted in increased noise under very high-load circumstances, the high-flow exhaust system created additional noise under numerous load conditions, limiting the market applicability for this system. The most ideal vehicle type for this type of setup is sports/enthusiast cars, as increased noise is often considered a desirable addition to the driving experience; light trucks also represent an excellent application opportunity for these systems, as noise is not a primary concern in production of these vehicles. Finally, it was found that investing in high-flow induction and exhaust systems may not be a wise investment at the consumer level due to the lengthy payoff period, but for manufacturers, these systems represent a lucrative opportunity to increase fuel efficiency, potentially boosting sales and profits, as well as allowing the company to more easily meet federal CAFE standards in America. After completion of this project, there are several further research directions that could be taken to expand upon what was learned. The fuel efficiency improvements realized by installing high-flow induction and exhaust systems together on a vehicle were experimentally measured during testing; determining the individual effects of each of these systems installed on a vehicle would be the next logical research step within the same vein. Noise, vibration, and harshness increases after installing these systems were also noticed during experimental trials, so another future research direction could be an investigation into reducing these unwanted effects of high-flow systems. Finally, turbocharging to increase a vehicle's fuel efficiency, the original topic of this thesis, is another very important, contemporary issue in the world of improving vehicle fuel efficiency, and with manufacturers consistently moving toward turbocharged platform development, is a prime research topic in this area of study. In conclusion, the results from this thesis project exhibit that high-flow induction and exhaust systems can substantially improve a vehicle's fuel efficiency without modifying any internal engine components. This idea of improving a vehicle's fuel economy from outside the engine will ideally be further researched, such as by investigating turbocharger systems and their ability to improve fuel efficiency, as well as be developed and implemented by others in their educational projects and commercial products.
ContributorsCurl, Samuel Levi (Author) / Trimble, Steven (Thesis director) / Takahashi, Timothy (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135312-Thumbnail Image.png
Description
This thesis examines the fuel hedging strategies and their performance in the airline industry. Hedging allows an airline to establish a semi-fixed cost for fuel prices in the future. Unexpected increases in fuel costs can easily move an airline into bankruptcy while a decrease in fuel prices can create massive

This thesis examines the fuel hedging strategies and their performance in the airline industry. Hedging allows an airline to establish a semi-fixed cost for fuel prices in the future. Unexpected increases in fuel costs can easily move an airline into bankruptcy while a decrease in fuel prices can create massive profits. With fuel prices that can vary 70% in several months, many airlines hedge fuel costs in order to cap a massive expense for the company. It is extremely difficult for airlines, or anyone, to predict what fuel prices will do next week, yet alone next quarter. This thesis notes there is no advisable portion of fuel that should be hedged for any airline; it is instead a complex set of variables that must be analyzed for each individual firm on an ongoing basis. Hedging is notably advised if a firm can accept the added costs of hedging premiums, the wages of employees to actively manage a hedging portfolio and the additional accounting regulations that must be followed. It can be performed using a variety of hedging instruments and utilizing various commodities. Over time, hedging will have a net effect of zero, therefore adding zero value to the firm. In reality, it is assumed that hedging fuel costs will help stabilize fuel prices and therefore stabilize cash flows and profits. The ideal implication is that the market will respond to increased stability in profits with a higher value of the firms publicly traded stock.
ContributorsMiller, Brent Fuller (Author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
132373-Thumbnail Image.png
Description
The oxygen sensitivity of hydrogenase is a large barrier in maximizing the efficiency of algal hydrogen production, despite recent efforts aimed at rewiring photosynthesis. This project focuses on the role of photosystem II (PSII) in extended hydrogen production by cells expressing the PSI-HydA1 chimera, with the goal of optimizing continuous

The oxygen sensitivity of hydrogenase is a large barrier in maximizing the efficiency of algal hydrogen production, despite recent efforts aimed at rewiring photosynthesis. This project focuses on the role of photosystem II (PSII) in extended hydrogen production by cells expressing the PSI-HydA1 chimera, with the goal of optimizing continuous production of photobiohydrogen in the green alga, Chlamydomonas reinhardtii. Experiments utilizing an artificial PSII electron
Therefore, it can be concluded that downstream processes are limiting the electron flow to the hydrogenase. It was also shown that the use of a PSII inhibitor, 3-(3,4-dichlorophenyl)-1,1- dimethylurea (DCMU), at sub-saturating concentrations under light exposure during growth temporarily improves the duration of the H2 evolution phase. The maximal hydrogen production rate was found to be approximately 32 nmol h-1 (µg Chl)-1. Although downregulation of PSII activity with DCMU improves the long-term hydrogen production, future experiments must be focused on improving oxygen tolerance of the hydrogenase as a means for higher hydrogen yields.
ContributorsO'Boyle, Taryn Reilly (Author) / Redding, Kevin (Thesis director) / Ghirlanda, Giovanna (Committee member) / Vermaas, Willem (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05