Matching Items (11)
Filtering by

Clear all filters

136174-Thumbnail Image.png
Description
Schizophrenia affects 1.1% of the population worldwide. Schizophrenia is a complex, multifactorial disorder. Stress can trigger psychotic episodes and exacerbate schizophrenic symptoms. For humans, one gene implicated in stress and schizophrenia in humans is the early growth response 3 (EGR3). Patients with genomic variations in EGR3 have reduced levels of

Schizophrenia affects 1.1% of the population worldwide. Schizophrenia is a complex, multifactorial disorder. Stress can trigger psychotic episodes and exacerbate schizophrenic symptoms. For humans, one gene implicated in stress and schizophrenia in humans is the early growth response 3 (EGR3). Patients with genomic variations in EGR3 have reduced levels of EGR3 in the prefrontal brain region compared with healthy patients. Schizophrenic patients also have less serotonin 2A receptor (5HT2AR), which is coded by the gene Htr2a, in their prefrontal cortex. Mice that are Egr3-deficient also have decreased levels of 5HT2AR, suggesting that Egr3 may be involved in the regulation of 5HT2AR. The purpose of the experiment is to determine if EGR3 binds to the Htr2a gene promoter region by using a Chromatin immunoprecipitation (ChIP) assay. We will use ECS to increase EGR3 expression. Previously we have identified two upstream sites of interest where EGR3 potentially binds to the Htr2a gene, one which is distal and one proximal to the transcription start site. After ECS, increased binding is seen in the Htr2a distal region with EGR3 via the ChIP assay. Increased binding was not observed at either of the promoter sites; however, the t-test comparing the distal site of the ECS and the No ECS groups to have a p-value of 0.056, suggesting that increasing the number of animals (n=7) could possibly give a more accurate representation to test our hypothesis. However, the experiment still suggests increased expression and that EGR3 may bind to the distal site of Htr2a. Keywords: stress, environment, genetics, schizophrenia, EGR3, chromatin immunoprecipitation
ContributorsMishra, Abhinav (Author) / Buetow, Kenneth (Thesis director) / Gallitano, Amelia (Committee member) / Zhao, Xiuli (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137499-Thumbnail Image.png
Description
Faërie exists in the mythology and literature of northwestern Europe as a spiritual Otherworld, a land of immortal beauty just tangential to our own. This project explored multiple conceptions of Faërie and their common association with things that have been lost. The pattern that emerged is one in which the

Faërie exists in the mythology and literature of northwestern Europe as a spiritual Otherworld, a land of immortal beauty just tangential to our own. This project explored multiple conceptions of Faërie and their common association with things that have been lost. The pattern that emerged is one in which the Otherworld is not merely linked to lost things, but becomes a way of preserving and rediscovering them. Faërie embodies the hope that things lost live on, and can be found again.
ContributorsBell, Andrew Roos (Author) / Baldini, Cajsa (Thesis director) / Maring, Heather (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / Department of English (Contributor)
Created2013-05
137791-Thumbnail Image.png
Description
This study examines sustainable development concerns as an essential part of the Costa Rican national identity. Interviews with ecotourism industry workers and an analysis of pertinent news articles shine light on the Costa Rican citizen's perspective of sustainable development, showing that in spite of current initiatives industry workers still have

This study examines sustainable development concerns as an essential part of the Costa Rican national identity. Interviews with ecotourism industry workers and an analysis of pertinent news articles shine light on the Costa Rican citizen's perspective of sustainable development, showing that in spite of current initiatives industry workers still have unmet environmental and economic concerns, and that the general public is both passionately interested and personally invested in the topic.
ContributorsHoward, Kalyn Marie (Author) / Puleo, Thomas (Thesis director) / Larson, Elizabeth (Committee member) / Hunter, Joel (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Politics and Global Studies (Contributor)
Created2013-05
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Water affordability is a critical issue for rural and tribal communities in Northern Arizona. However, measuring affordability in these communities can be extremely challenging due to a lack of accessible data and several unique, structural, barriers. This thesis evaluates both the challenges and opportunities for measuring water affordability in the

Water affordability is a critical issue for rural and tribal communities in Northern Arizona. However, measuring affordability in these communities can be extremely challenging due to a lack of accessible data and several unique, structural, barriers. This thesis evaluates both the challenges and opportunities for measuring water affordability in the City of Show Low and the Hopi Nation and explores potential solutions to improve measurement accessibility. Using a mixed-methods approach, the study found that data necessary to measure water affordability is often unavailable or difficult to collect in rural and tribal systems, and limited resources, personnel & capacity, as well as sociocultural and political factors within these areas further hinder their ability to assess affordability. Additionally, analysis of existing resources and initiatives for assessing water affordability in these communities revealed several limitations that must be addressed to improve measurement accessibility. The study suggests that several actions can be taken at the state and federal levels to improve the ability of small and rural systems to study water affordability in Northern Arizona. These actions include conducting a state-wide water affordability assessment, improving existing guidebooks and resources specifically for rural and tribal systems, providing low-cost consultants to assist in utility management, detailed federal review of SRF funding application requirements, and oversight on new allocations following the recent historic investment in the SRF. Overall, this thesis highlights the challenges faced by rural and tribal communities in measuring water affordability and provides recommendations for policymakers and stakeholders to improve measurement accessibility. By advocating for policy changes and addressing limitations in existing resources, this research aims to improve water affordability in Northern Arizona and beyond.

ContributorsHeminger, Grant (Author) / Sorensen, Kathryn (Thesis director) / Johnson, Michael Kotutwa (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Psychology (Contributor) / School of Politics and Global Studies (Contributor)
Created2023-05
Description

Food waste is a crucial issue in stores, restaurants and other institutions. Specifically, there is a high amount of food waste in grocery stores, especially in the produce section. As a result, environmental damage occurs, and many individuals struggle to have food in their homes. This thesis will analyze the

Food waste is a crucial issue in stores, restaurants and other institutions. Specifically, there is a high amount of food waste in grocery stores, especially in the produce section. As a result, environmental damage occurs, and many individuals struggle to have food in their homes. This thesis will analyze the cause, quantity, and effect of this waste, and how it can be changed or mitigated. An overarching question was posed to analyze these causes and effects of waste, asking how does the amount of produce waste that occurs in Scottsdale, Arizona contribute to environmental issues and what is being done to remedy this issue? As this is a difficult question to answer on its own, the research was broken down into two more answerable questions, which are Why does produce get wasted in grocery stores? How much of this occurs? and What remedies already exist to limit/reduce this waste? These questions are important because they contribute to knowledge and understanding about food waste, consumer waste, as well as the overall environmental impact of being wasteful. It is also important for both retailers and consumers to understand that waste has an immense and negative impact on the environment and contributes to climate change, and that taking steps to reduce this waste is essential.

ContributorsPagnillo, Mary (Author) / Haglund, LaDawn (Thesis director) / Holman, Christine (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor)
Created2023-05
Description

Mining is a key component of both the Brazilian and Chilean economies and accounts for an outsized share of these countries’ exports. Yet, it is a common target for environmental criticism, especially due to its impacts on local populations and ecosystems. Brazil and Chile have adopted markedly different trade strategies

Mining is a key component of both the Brazilian and Chilean economies and accounts for an outsized share of these countries’ exports. Yet, it is a common target for environmental criticism, especially due to its impacts on local populations and ecosystems. Brazil and Chile have adopted markedly different trade strategies over the past three decades, most notably with regards to their involvement in international trade agreements. This paper investigates how these differences in trade policy since 1990 have affected the sustainability of each country’s mining sector by identifying and comparing the channels through which free trade agreements influence the environmental impacts of resource extraction.

ContributorsKopek, Justin (Author) / Sheriff, Glenn (Thesis director) / Goodman, Glen (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Politics and Global Studies (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
DescriptionMy creative project is a brand new Barrett, The Honors course that examines the complex and evolving intersections between natural disasters, culture, and resilience in Italy.
ContributorsNavia, Bianca Christine (Author) / Dal Martello, Chiara (Thesis director) / Vitullo, Juliann (Committee member) / School of Politics and Global Studies (Contributor, Contributor) / School of International Letters and Cultures (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
Description
The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.
ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164862-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05