Matching Items (9)
Filtering by

Clear all filters

137207-Thumbnail Image.png
Description
The main goal of this study was to understand the awareness of small business owners regarding occupational fraud, meaning fraud committed from within an organization. A survey/questionnaire was used to gather insight into the knowledge and perceptions of small business owners, while also obtaining information about the history of fraud

The main goal of this study was to understand the awareness of small business owners regarding occupational fraud, meaning fraud committed from within an organization. A survey/questionnaire was used to gather insight into the knowledge and perceptions of small business owners, while also obtaining information about the history of fraud and the internal controls within their business. Twenty-four owners of businesses with less than 100 employees participated in the study. The results suggest that small business owners overestimate their knowledge regarding internal controls and occupational fraud, while also underestimating the risk of fraud within their own business. In fact, 92% of participants were not at all familiar with the popular Internal Control \u2014 Integrated Framework published by the Committee of Sponsoring Organizations of the Treadway Commission. The results also show that small business owners tend to overestimate the protection provided by their currently implemented controls in regard to their risk of fraud. Overall, through continued knowledge of internal controls and occupational fraud, business owners can better protect their businesses from the risk of occupational fraud by increasing their awareness of fraud.
ContributorsDennis, Lauren Nicole (Author) / Orpurt, Steven (Thesis director) / Munshi, Perseus (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / School of Accountancy (Contributor)
Created2014-05
132866-Thumbnail Image.png
Description
Within this paper I summarize the key features, and results, of research conducted to support the development, design, and implementation of an internal control system at a startup small business. These efforts were conducted for an Honors Thesis/Creative Project for Barrett, the Honors College at Arizona State University. The research

Within this paper I summarize the key features, and results, of research conducted to support the development, design, and implementation of an internal control system at a startup small business. These efforts were conducted for an Honors Thesis/Creative Project for Barrett, the Honors College at Arizona State University. The research revolved around deciding which financial policies, procedures, and safeguards could be useful in creating an internal control system for small businesses. In addition to academic research, I developed an “Internal Control Questionnaire” for use as a ‘jumping off point’ in conversations about a business’ existing accounting system. This questionnaire is applicable across many industries, covering the major topics which every small business/startup should consider.

The questionnaire was then used in conjunction with two interviews of small business owners. The interviews covered both the overall financial status of their business and their business’ pre-existing accounting system. The feedback received during these interviews was subsequently used to provide the business owners with eleven recommendations ranging from the implementation of new policies to verification of existing internal controls.

Finally, I summarize my findings, both academic and real-world, conveying that many small business owners do not implement formal internal control systems. I also discuss why the business owners, in this specific circumstance, did not yet implement the aforementioned eleven suggestions.
ContributorsDuncan, Spencer James (Author) / Garverick, Michael (Thesis director) / Casas Arce, Pablo (Committee member) / School of Accountancy (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
162321-Thumbnail Image.png
ContributorsReed, Katherine (Author) / Stapp, Mark (Thesis director) / Tetreault, Colin (Committee member) / Barrett, The Honors College (Contributor) / School of Accountancy (Contributor)
Created2021-12
162322-Thumbnail Image.png
ContributorsReed, Katherine (Author) / Stapp, Mark (Thesis director) / Tetreault, Colin (Committee member) / Barrett, The Honors College (Contributor) / School of Accountancy (Contributor)
Created2021-12
Description

Mitigation banks are a tool created to mitigate and compensate for negative impacts on the environment resulting from man made activities, especially damage caused to endangered wildlife, plants, and wetland ecosystems. The main objective of creating the system of mitigation banks is to achieve environmental equilibrium, meaning “No Net Loss”

Mitigation banks are a tool created to mitigate and compensate for negative impacts on the environment resulting from man made activities, especially damage caused to endangered wildlife, plants, and wetland ecosystems. The main objective of creating the system of mitigation banks is to achieve environmental equilibrium, meaning “No Net Loss” to all environmental functions. This means damage to one area is compensated for in another area of like-kind through restoration. There is great controversy surrounding this claim. There is a system of debits and credits to ensure ecological loss from development is preceded by restoration of a similar ecology and function. Wetland mitigation banks are the focus for the purpose of research. Background and benefits will be given first, followed by threats, issues, solutions and a personal experience with mitigation banks.

ContributorsReed, Katherine (Author) / Stapp, Mark (Thesis director) / Tetreault, Colin (Committee member) / Barrett, The Honors College (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Department of Finance (Contributor)
Created2021-12
132497-Thumbnail Image.png
Description
This study aims to identify the self-reported sustainability goals, practices, and results of the five largest hotel companies that are headquartered in the United States through a comprehensive content analysis of each of their websites. The five companies included in the study are Best Western International, Wyndham Hotels and Resorts,

This study aims to identify the self-reported sustainability goals, practices, and results of the five largest hotel companies that are headquartered in the United States through a comprehensive content analysis of each of their websites. The five companies included in the study are Best Western International, Wyndham Hotels and Resorts, Choice Hotels International, Hilton Worldwide, and Marriott International. The main focus centered on the qualitative information they shared about their goals and implemented practices across the hotels owned and operated by each company. In addition, the published qualitative data was analyzed to look at the reported results of their implemented practices. The results showed a large variety in the level of information that was shared by each of the five companies.
Information was examined using thirteen indicators of sustainability. Eight indicators were chosen that represented environmental sustainability, plus five indicators that represent social and economic sustainability. Based on the information analyzed, each company received a score for each indicator according to the level of information disclosed. This created a sustainability scorecard, with Marriott and Hilton scoring the highest, Wyndham and Best Western scoring the lowest, and Choice Hotels falling in the middle .In summary, it was determined that Hilton is reporting at the highest level, based on the measured indicators in addition to receiving external assurance on their disclosed results from implemented practices, The other four companies have further steps they should take to better communicate their sustainable practices and overall commitment to sustainability.
ContributorsStefanowski, Stacey Rita (Author) / Nyaupane, Gyan (Thesis director) / Chhabra, Deepak (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Accountancy (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.
ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164862-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164863-Thumbnail Image.png
Description

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates

The production and incineration of single-use micropipette tips and disposable gloves, which are heavily used within laboratory facilities, generate large amounts of greenhouse gasses (GHGs) and accelerate climate change. Plastic waste that is not incinerated often is lost in the environment. The long degradation times associated with this waste exacerbates a variety of environmental problems such as substance runoff and ocean pollution. The objective of this study was to evaluate the efficacy of possible solutions for minimizing micropipette tip and disposable glove waste within laboratory spaces. It was hypothesized that simultaneously implementing the use of micropipette tip washers (MTWs) and energy-from-glove-waste programs (EGWs) would significantly reduce (p < 0.05) the average combined annual single-use plastic micropipette tip and nitrile glove waste (in kg) per square meter of laboratory space in the United States. ASU’s Biodesign Institute (BDI) was used as a case study to inform on the thousands of different laboratory facilities that exist all across the United States. Four separate research laboratories within the largest public university of the U.S. were sampled to assess the volume of plastic waste from single-use micropipette tips and gloves. Resultant data were used to represent the totality of single-use waste from the case study location and then extrapolated to all laboratory space in the United States. With the implementation of EGWs, annual BDI glove waste is reduced by 100% (0.47 ± 0.26 kg/m2; 35.5 ± 19.3 metric tons total) and annual BDI glove-related carbon emissions are reduced by ~5.01% (0.165 ± 0.09 kg/m2; 1.24 ± 0.68 metric tons total). With the implementation of MTWs, annual BDI micropipette tip waste is reduced by 92% (0.117 ± 0.03 kg/m2; 0.88 ± 0.25 metric tons total) and annual BDI tip-related carbon emissions are reduced by ~83.6% (4.04 ± 1.25 kg/m2; 30.5 ± 9.43 metric tons total). There was no significant difference (p = 0.06) observed between the mass of single-use waste (kg) in the sampled laboratory spaces before (x̄ = 47.1; σ = 43.3) and after (x̄ =0.070; σ = 0.033) the implementation of the solutions. When examining both solutions (MTWs & EGWs) implemented in conjunction with one another, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$7.92 ± $9.31/m2 (7,500 m2 of total wet laboratory space) or ~$60,000 ± $70,000 total. These savings represent ~15.77% of annual BDI spending on micropipette tips and nitrile gloves. The large error margins in these financial estimates create high uncertainty for whether or not BDI would see net savings from implementing both solutions simultaneously. However, when examining the implementation of only MTWs, the annual BDI financial savings (in regard to both purchasing and disposal costs) after the first year were determined to be ~$12.01 ± $6.79 kg/m2 or ~$91,000 ± $51,200 total. These savings represent ~23.92% of annual BDI spending on micropipette tips and nitrile gloves. The lower error margins for this estimate create a much higher likelihood of net savings for BDI. Extrapolating to all laboratory space in the United States, the total annual amount of plastic waste avoided with the implementation of the MTWs was identified as 8,130 ± 2,290 tons or 0.023% of all solid plastic waste produced in the United States in 2018. The total amount of nitrile waste avoided with the implementation of the EGWs was identified as 32,800 ± 17,900 tons or 0.36% of all rubber solid waste produced in the United States in 2018. The total amount of carbon emissions avoided with the implementation of the MTWs was identified as 281,000 ± 87,000 tons CO2eq or 5.4*10-4 % of all CO2eq GHG emissions produced in the United States in 2020. Both the micropipette tip washer and the glove waste avoidance program solutions can be easily integrated into existing laboratories without compromising the integrity of the activities taking place. Implemented on larger scales, these solutions hold the potential for significant single-use waste reduction.

ContributorsZdrale, Gabriel (Author) / Mahant, Akhil (Co-author) / Halden, Rolf (Thesis director) / Biyani, Nivedita (Committee member) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05