Matching Items (3)
Filtering by

Clear all filters

153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
ContributorsMa, Xiaoli (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2015
154786-Thumbnail Image.png
Description
Lithium ion batteries have emerged as the most popular energy storage system, but they pose safety issues under extreme temperatures or in the event of a thermal runaway. Lithium ion batteries with inorganic separators offer the advantage of safer operation. An inorganic separator for lithium ion battery was prepared

Lithium ion batteries have emerged as the most popular energy storage system, but they pose safety issues under extreme temperatures or in the event of a thermal runaway. Lithium ion batteries with inorganic separators offer the advantage of safer operation. An inorganic separator for lithium ion battery was prepared by an improved method of blade coating α-Al2O3 slurry directly on the electrode followed by drying. The improved separator preparation involves a twice-coating process instead of coating the slurry all at once in order to obtain a thin (~40 µm) and uniform coat. It was also found that α-Al2O3 powder with particle size greater than the pore size in the electrode is preferable for obtaining a separator with 40 µm thickness and consistent cell performance. Unlike state-of-the-art polyolefin separators such as polypropylene (PP) which are selectively wettable with only certain electrolytes, the excellent electrolyte solvent wettability of α-Al2O3 allows the coated alumina separator to function with different electrolytes. The coated α-Al2O3 separator has a much higher resistance to temperature effects than its polyolefin counterparts, retaining its dimensional integrity at temperatures as high as 200ºC. This eliminates the possibility of a short circuit during thermal runaway. Lithium ion batteries assembled as half-cells and full cells with coated α-Al2O3 separator exhibit electrochemical performance comparable with that of polyolefin separators at room temperature. However, the cells with coated alumina separator shows better cycling performance under extreme temperatures in the temperature range of -30°C to 60°C. Therefore, the coated α-Al2O3 separator is very promising for application in safe lithium-ion batteries.
ContributorsSharma, Gaurav (Author) / Lin, Jerry Y.S. (Thesis advisor) / Chan, Candace (Committee member) / Kannan, Arunachala (Committee member) / Arizona State University (Publisher)
Created2016
187528-Thumbnail Image.png
Description
The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to contribute to the development of these innovations to move them

The metallization and interconnection of Si photovoltaic (PV) devices are among some of the most critically important aspects to ensure the PV cells and modules are cost-effective, highly-efficient, and robust through environmental stresses. The aim of this work is to contribute to the development of these innovations to move them closer to commercialization.Shingled PV modules and laser-welded foil-interconnected modules present an alternative to traditional soldered ribbons that can improve module power densities in a cost-effective manner. These two interconnection methods present new technical challenges for the PV industry. This work presents x-ray imaging methods to aid in the process-optimization of the application and curing of the adhesive material used in shingled modules. Further, detailed characterization of laser welds, their adhesion, and their effect on module performances is conducted. A strong correlation is found between the laser-weld adhesion and the modules’ durability through thermocycling. A minimum laser weld adhesion of 0.8 mJ is recommended to ensure a robust interconnection is formed. Detailed characterization and modelling are demonstrated on a 21% efficient double-sided tunnel-oxide passivating contact (DS-TOPCon) cell. This technology uses a novel approach that uses the front-metal grid to etch-away the parasitically-absorbing poly-Si material everywhere except for underneath the grid fingers. The modelling yielded a match to the experimental device within 0.06% absolute of its efficiency. This DS-TOPCon device could be improved to a 23.45%-efficient device by improving the optical performance, n-type contact resistivity, and grid finger aspect ratio. Finally, a modelling approach is explored for simulating Si thermophotovoltaic (TPV) devices. Experimentally fabricated diffused-junction devices are used to validate the optical and electrical aspects of the model. A peak TPV efficiency of 6.8% is predicted for the fabricated devices, but a pathway to 32.5% is explained by reducing the parasitic absorption of the contacts and reducing the wafer thickness. Additionally, the DS-TOPCon technology shows the potential for a 33.7% efficient TPV device.
ContributorsHartweg, Barry (Author) / Holman, Zachary (Thesis advisor) / Chan, Candace (Committee member) / Bertoni, Mariana (Committee member) / Yu, Zhengshan (Committee member) / Arizona State University (Publisher)
Created2023