Matching Items (5)
Filtering by

Clear all filters

156134-Thumbnail Image.png
Description
In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited

In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4×10–6 -cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of ±0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13˚C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.
ContributorsWang, Laidong (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Kozicki, Michael (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2018
154556-Thumbnail Image.png
Description
To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two

To date, the most popular and dominant material for commercial solar cells is

crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out

of all commercial solar cells. Although the potential of crystalline-Si solar cells in

supplying energy demands is enormous, their future growth will likely be constrained

by two major bottlenecks. The first is the high electricity input to produce

crystalline-Si solar cells and modules, and the second is the limited supply of silver

(Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching

terawatt-scale deployment, which means the electricity produced by crystalline-Si

solar cells would never fulfill a noticeable portion of our energy demands in the future.

In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al)

electroplating has been developed as an alternative metallization technique in the

fabrication of crystalline-Si solar cells. The plating is carried out in a

near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been

found that dense, adherent Al deposits with resistivity in the high 10^–6 ohm-cm range

can be reproducibly obtained directly on Si substrates and nickel seed layers. An

all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al

back electrode, has been successfully demonstrated based on commercial p-type

monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further

optimization of the cell fabrication process, in particular a suitable patterning

technique for the front silicon nitride layer, is expected to increase the efficiency of

the cell to ~18%. This shows the potential of Al electroplating in cell metallization is

promising and replacing Ag with Al as the front finger electrode is feasible.
ContributorsSun, Wen-Cheng (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155558-Thumbnail Image.png
Description
Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of

Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials—ZnTe, CuZnS, and a-Si:H—and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based devices have been demonstrated with open-circuit voltages of up to 1.176 V and a maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms present within these devices, both optical and electrical, concludes with the presentation of a series of potential design changes meant to address these issues.
ContributorsBecker, Jacob J (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2017
157670-Thumbnail Image.png
Description
Silicon photovoltaics is the dominant contribution to the global solar energy production. As increasing conversion efficiency has become one of the most important factors to lower the cost of photovoltaic systems, the idea of making a multijunction solar cell based on a silicon bottom cell has attracted broad interest. Here

Silicon photovoltaics is the dominant contribution to the global solar energy production. As increasing conversion efficiency has become one of the most important factors to lower the cost of photovoltaic systems, the idea of making a multijunction solar cell based on a silicon bottom cell has attracted broad interest. Here the potential of using dilute nitride GaNPAs alloys for a lattice-matched 3-terminal 2-junction Si-based tandem solar cell through multiscale modeling is investigated. To calculate the electronic band structure of dilute nitride alloys with relatively low computational cost, the sp^3 d^5 s^* s_N tight-binding model is chosen, as it has been demonstrated to obtain quantitatively correct trends for the lowest conduction band near Γ, L, and X for dilute-N GaNAs. A genetic algorithm is used to optimize the sp^3 d^5 s^* tight-binding model for pure GaP and GaAs for their optical properties. Then the optimized sp^3 d^5 s^* s_N parametrizations are obtained for GaNP and GaNAs by fitting to experimental bandgap values. After that, a virtual crystal approach gives the Hamiltonian for GaNPAs alloys. From their tight-binding Hamiltonian, the first-order optical response functions of dilute nitride GaNAs, GaNP, and GaNPAs are calculated. As the N mole fraction varies, the calculated critical optical features vary with the correct trends, and agree well with experiment. The calculated optical properties are then used as input for the solar device simulations based on Silvaco ATLAS. For device simulation, a bottom cell model is first constructed to generate performance results that agree well with a demonstrated high-efficiency Si heterojunction interdigitated back contact (IBC) solar cell reported by Kaneka. The front a-Si/c-Si interface is then replaced by a GaP/Si interface for the investigation of the sensitivity of the GaP/Si interface to interface defects in terms of degradation of the IBC cell performance, where we find that an electric field that induces strong band bending can significantly mitigate the impact of the interfacial traps. Finally, a lattice-matched 3-terminal 2-junction tandem model is built for performance simulation by stacking a dilute nitride GaNP(As) cell on the Si IBC cell connected through a GaP/Si interface. The two subcells operate quasi-independently. In this 3-terminal tandem model, traps at the GaP/Si interface still significantly impact the performance of the Si subcell, but their effects on the GaNP subcell are relatively small. Assuming the interfacial traps are well passivated, the tandem efficiency surpasses that of a single-junction Si cell, with values close to 33% based on realistic parameters.
ContributorsZou, Yongjie (Author) / Goodnick, Stephen M. (Thesis advisor) / Honsberg, C. (Christiana B.) (Committee member) / King, Richard R. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2019
161900-Thumbnail Image.png
Description
As India expanded its grid infrastructure, decentralized renewable energy technologies, such as off-grid solar, also emerged in parallel as an electrification solution. This dissertation critically examines the role of off-grid solar in facilitating rural electrification efforts in India. Specifically, it applies the frameworks of the multi-level perspective, capabilities approach, and

As India expanded its grid infrastructure, decentralized renewable energy technologies, such as off-grid solar, also emerged in parallel as an electrification solution. This dissertation critically examines the role of off-grid solar in facilitating rural electrification efforts in India. Specifically, it applies the frameworks of the multi-level perspective, capabilities approach, and energy justice to achieve three objectives: (1) trace the evolution of off-grid solar in India; (2) understand the role of solar micro-grids in improving household capabilities and well-being; (1) examine whether and how community-scale solar micro-grids can operate as just means of electrification. This research relies on qualitative case-study methods. The historical research in Paper 1 is based on published policy documents and interviews with energy experts in India. It finds that landscape-regime-niche actor relations and politics were crucial in shaping off-grid solar transition outcomes. There is also a narrative component, as the key narratives of energy security, environmental degradation, climate change and energy for development converged to create spaces for state and non-state interactions that could nurture the development of off-grid solar. The community-level research in Papers 2 and 3 analyze a local energy initiative of community operated solar micro-grid using semi-structured interviews and participant observations from three villages in Maharashtra. Solar micro-grids play an important part in expanding people’s choices and opportunities. The benefits are not uniform across all people, however. Increases in energy-related capabilities vary by economic class and gender, and to some extent this means certain biases can get reinforced. In addition, the inability of solar micro-grids to keep up with the changing electrification landscape and daily practices means that the challenges of affordability, reliability and community engagement emerged as important concerns over-time. Empirically, this dissertation finds that off-grid energy initiatives must be carefully designed to be in alignment with local values and realities. Theoretically, it adds to debates on justice in energy transitions by showcasing the regime-led innovations, and temporality elements of energy justice local energy initiatives.
ContributorsRajagopalan, Sushil (Author) / Breetz, Hanna (Thesis advisor) / Klinsky, Sonja (Thesis advisor) / Singh, Kartikeya (Committee member) / Arizona State University (Publisher)
Created2021