Matching Items (2)
Filtering by

Clear all filters

134630-Thumbnail Image.png
Description
This paper seeks to analyze the relationship between energy subsidies on fossil fuels by countries and corresponding energy consumption, specifically electricity, by its citizens and occupants. The purpose of this was to determine whether pre-tax subsidies and post-tax subsidies have an effect on that consumption. This paper will discuss the

This paper seeks to analyze the relationship between energy subsidies on fossil fuels by countries and corresponding energy consumption, specifically electricity, by its citizens and occupants. The purpose of this was to determine whether pre-tax subsidies and post-tax subsidies have an effect on that consumption. This paper will discuss the prospect of accounting for post-tax subsidies as a method to curb rampant energy consumption throughout the world, with the focus being on residential electricity use. The two case studies, the Netherlands and Saudi Arabia, will illustrate the consumption patterns in relatively similar economic societies with different subsidy policies. Saudi Arabia will be a high pre-tax subsidy example while the Netherlands will be shown to account for some of the post-tax subsidies through an externality tax system. At the end of this analysis, this paper will show that the heavy subsidization of electricity production is strongly correlated to residential electricity consumption at levels that many officials would deem unsustainable, and that as such, subsidy reform is both beneficial and necessary.
ContributorsCorona, Kyle (Author) / Kelman, Jonathan (Thesis director) / Breetz, Hanna (Committee member) / School of Sustainability (Contributor, Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134553-Thumbnail Image.png
Description
The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a

The purpose of this research is to study the effect of angle of acceptance and mechanical control system noise on the power available to a two-axis solar concentrating photovoltaic (CPV) system. The efficiency of a solar CPV system is greatly dependent on the accuracy of the tracking system because a strong focal point is needed to concentrate incident solar irradiation on the small, high efficiency cells. The objective of this study was to evaluate and quantify tracking accuracy for a performance model which would apply to similar two-axis systems. An analysis comparing CPV to traditional solar photovoltaics from an economic standpoint was conducted as well to evaluate the viability of emerging CPV technology. The research was performed using two calibrated solar radiation sensors mounted on the plane of the tracking system, normal to the sun. One sensor is held at a constant, normal angle (0 degrees) and the other is varied by a known interior angle in the range of 0 degrees to 10 degrees. This was to study the magnitude of the decrease in in irradiance as the angle deviation increases. The results show that, as the interior angle increases, the solar irradiance and thus available power available on the focal point will decrease roughly at a parabolic rate, with a sharp cutoff point at angles greater than 5 degrees. These findings have a significant impact on CPV system tracking mechanisms, which require high precision tracking in order to perform as intended.
ContributorsPodzemny, Dominic James (Author) / Reddy, Agami (Thesis director) / Kelman, Jonathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05