Matching Items (3)
Filtering by

Clear all filters

171949-Thumbnail Image.png
Description
Global decarbonization requires a large-scale shift to sustainable energy sources. Innovation will be a key enabler of this global energy transition. Although the energy transition and innovation literatures overwhelmingly focus on the Global North, energy innovation is arguably even more important for the Global South because it can enable them

Global decarbonization requires a large-scale shift to sustainable energy sources. Innovation will be a key enabler of this global energy transition. Although the energy transition and innovation literatures overwhelmingly focus on the Global North, energy innovation is arguably even more important for the Global South because it can enable them to grow their energy demand and power their development with sustainable resources. This dissertation examines three aspects of energy innovation, focusing on Mexico, to advance the understanding of innovation systems and identify policy levers for accelerating energy innovation in emerging economies. The first project utilizes econometric models to assess patenting drivers for renewable energy (wind and solar) and enabling technologies (energy storage, high voltage direct current technologies, hydrogen technologies, and fuel cells) across 34 countries, including Mexico. The examination of enabling technologies is a particular contribution, since most research on energy innovation focuses on renewable generation technologies. This research finds that policies have differential effects on renewable technologies versus enabling technology, with innovation in enabling technologies lagging behind the deployment of renewable energy. Although renewable energy policies have some spillover effects on enabling technologies, this research suggests that targeted policy instruments for enabling technologies may be needed for global decarbonization. The second and third projects apply the innovation systems framework to understand energy innovation in Mexico. The second project analyzes the sectoral innovation system (SIS) for wind and solar technologies, using expert interviews to evaluate SIS structure and functions systemically. It finds that this innovation system is susceptible to changes in its structure, specifically institutional modifications, and encounters cultural and social aspects that reduce its performance. Further, it finds that non-government organizations and local governments are trying to support the SIS, but their efforts are hampered by low participation from the federal government. The third project studies the technology innovation system (TIS) for green hydrogen, an emerging industrial opportunity for Latin America. It evaluates this TIS's functionality and identifies 22 initiatives to improve its performance by interviewing green hydrogen experts in Mexico. The most important initiatives for strengthening the green hydrogen TIS are information campaigns, policy and regulation (taxes, subsidies, standards, and industrial policies), pilot or demonstration projects, and professional training. Overall, this dissertation contributes to the nexus of energy transition and innovation studies by advancing the understanding of energy innovation in an emerging economy.
ContributorsAguiar Hernandez, Carlos Gabriel (Author) / Breetz, Hanna (Thesis advisor) / Parker, Nathan (Committee member) / Solis, Dario (Committee member) / Arizona State University (Publisher)
Created2022
171557-Thumbnail Image.png
Description
This dissertation consists of three chapters that investigate the rapid adoption and complex implementation of city commitments to transition to 100% renewable energy (100RE). The first paper uses a two-stage, mixed methods approach to examine 100RE commitments across the US, combining a multivariate regression of demographic, institutional, and policy factors

This dissertation consists of three chapters that investigate the rapid adoption and complex implementation of city commitments to transition to 100% renewable energy (100RE). The first paper uses a two-stage, mixed methods approach to examine 100RE commitments across the US, combining a multivariate regression of demographic, institutional, and policy factors in adoption and six interview-based state case studies to discuss implementation. Adoption of this non-binding commitment progressed rapidly for city councils around the US. Results show that many cities passed 100RE commitments with no implementation plan and minimal understanding of implementation challenges. This analysis highlights that many cities will need new institutions and administrative capacities for successful implementation of these ambitious new policies. While many cities abandoned the commitment soon after adoption, collaboration allowed cities in a few states to break through and pursue implementation, examined further in the next two studies. The second paper is a qualitative case study examining policymaking for the Utah Community Renewable Energy Act. Process tracing methods are used to identify causal factors in enacting this legislation at the state level and complementary resolutions at the local level. This Act was passed through the leadership and financial backing of major cities and committed the investor-owned utility to fulfill any city 100RE resolutions passed through 2019. Finally, the third paper is a mixed-methods, descriptive case study of the benefits of Community Choice Aggregation (CCA) in California, which many cities are using to fulfill their 100RE commitments. Cities have adopted CCAs to increase their local voice in the energy process, while fulfilling climate and energy goals. Overall, this research shows that change in the investor-owned utility electricity system is in fact possible from the city scale, though many cities will need institutional innovation to implement these policies and achieve the change they desire. While cities with greater resources are better positioned to make an impact, smaller cities can collaborate to similarly influence the energy system. Communities are interested in lowering energy costs for customers where possible, but the central motivations in these cases were the pursuit of sustainability and increasing local voice in energy decision-making.
ContributorsKunkel, Leah Christine (Author) / Breetz, Hanna L (Thesis advisor) / Parker, Nathan (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2022
Description
The algal fuel industry has existed since the 1980s without fully commercializing a product. Algal fuels are potentially viable replacements for fossil fuels due to their fast cultivation, high oil content, carbon dioxide sequestration during growth, and ability to be grown on non-arable land. For this thesis, six

The algal fuel industry has existed since the 1980s without fully commercializing a product. Algal fuels are potentially viable replacements for fossil fuels due to their fast cultivation, high oil content, carbon dioxide sequestration during growth, and ability to be grown on non-arable land. For this thesis, six companies from 61 investigated were interviewed about their history with biofuels, technological changes they have gone through, and views for the future of the industry. All companies interviewed have moved away from fuel production largely due to high production costs and have moved primarily toward pharmaceuticals and animal feed production as well as wastewater treatment. While most do not plan to return to the biofuel industry in the near future, a return would likely require additional legislation, increased technological innovation, and coproduction of multiple products.
ContributorsMassey, Alexandria Rae (Author) / Parker, Nathan (Thesis director) / Agusdinata, Buyung (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05