Matching Items (11)

Filtering by

Clear all filters

131946-Thumbnail Image.png

Hydrothermal Liquefaction of Micro-Algae to Produce Liquid Biofuels

Description

Fossil fuels are currently the main source of energy in the world’s transportation sector. They are also the primary contributor to carbon emissions in the atmosphere, leading to adverse climate effects. The objective of the following research is to increase

Fossil fuels are currently the main source of energy in the world’s transportation sector. They are also the primary contributor to carbon emissions in the atmosphere, leading to adverse climate effects. The objective of the following research is to increase the yield and efficiency of algal biofuel in order to establish algal-derived fuel as a competitive alternative to predominantly used fossil fuels. Using biofuel commercially will reduce the cost of production and ultimately decrease additional carbon emissions. Experiments were performed using hydrothermal liquefaction (HTL) to determine which catalyst would enhance the algal biocrude oil and result in the highest quality biofuel product, as well as to find the optimal combination of processing temperature and manure co-liquefaction of biomass ratio. For the catalytic upgrading experiments, Micractenium Immerum algae was used in conjunction with pure H2, Pt/C, MO2C, and HZSM-5 catalysts at 350℃ and 400℃, 430 psi, and a 30-minute residence time to investigate the effects of catalyst choice and temperature on the crude oil yield. While all catalysts increased the carbon content of the crude oil, it was found that using HZSM-5 at 350℃ resulted in the greatest overall yield of about 75%. However, the Pt/C catalyst increased the HHV from 34.26 MJ/kg to 43.26 MJ/kg. Cyanidioschyzon merolae (CM) algae and swine manure were utilized in the co-liquefaction experiments, in ratios (algae to swine) of 80:20, 50:50, and 20:80 at temperatures of 300℃ and 330℃. It was found that a ratio of 80:20 at 330℃ produced the highest biocrude oil yield of 29.3%. Although the 80:20 experiments had the greatest biomass conversion and best supported the deacidification of the oil product, the biocrude oil had a HHV of 33.58 MJ/kg, the lowest between the three different ratios. However, all calorific values were relatively close to each other, suggesting that both catalytic upgrading and co-liquefaction can increase the efficiency and economic viability of algal biofuel.

Contributors

Agent

Created

Date Created
2020-05

135253-Thumbnail Image.png

Electrochemical Characterization of a High-Current-Density Microbial Biocathode with an Air Diffusion Membrane

Description

In microbial fuel cells (MFCs) the biocathode is developed as a potential alternative to chemical cathodic catalysts, which are deemed as expensive and unsustainable for applications. These cells utilize different types of microorganisms as catalysts to promote biodegradation of organic

In microbial fuel cells (MFCs) the biocathode is developed as a potential alternative to chemical cathodic catalysts, which are deemed as expensive and unsustainable for applications. These cells utilize different types of microorganisms as catalysts to promote biodegradation of organic matter while simultaneously converting energy released in metabolic reactions into electrical energy. Most current research have focused more on the anodic microbes, including the current generating bacteria species, anodic microbial community composition, and the mechanisms of the extracellular electron transfer. Compared to the anode, research on the microbes of the biocathode of the MFCs are very limited and are heavily focused on the role of the bacteria in the system. Thus, further understand of the mechanism of the microbial community in the biocathode will create new engineering applications for sustainable energy. Previous research conducted by Strycharz-Glaven et al. presented an electrochemical analysis of a Marinobacter-dominated biocathode communitygrown on biocathodes in sediment/seawater-based MFCs. Chronoamperometry results indicated that current densities up to -0.04 A/m2 were produced for the biocathode. Cyclic voltammetry responses indicated a midpoint potential at 0.196 V ± 0.01 V. However, the reactor design for these experiments showed that no oxygen is supplied to the electrochemical system. By incorporating an air diffusion membrane to the cathode of the reactor, chronoamperometry results have produced current density in the system up to -0.15 A/m2. Cyclic voltammetry results have also displayed a midpoint potential of 0.25 V ± 0.01 V under scan rates of 0.2 mV/s. Thus, this electrochemical setup has increased the current output of the system.

Contributors

Agent

Created

Date Created
2016-05

135442-Thumbnail Image.png

A Stability Study of the MOF-5 Membrane

Description

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their

Within recent years, metal-organic frameworks, or MOF’s, have gained a lot of attention in the materials research community. These micro-porous materials are constructed of a metal oxide core and organic linkers, and have a wide-variety of applications due to their extensive material characteristic possibilities. The focus of this study is the MOF-5 material, specifically its chemical stability in air. The MOF-5 material has a large pore size of 8 Å, and aperture sizes of 15 and 12 Å. The pore size, pore functionality, and physically stable structure makes MOF-5 a desirable material. MOF-5 holds applications in gas/liquid separation, catalysis, and gas storage. The main problem with the MOF-5 material, however, is its instability in atmospheric air. This inherent instability is due to the water in air binding to the zinc-oxide core, effectively changing the material and its structure. Because of this material weakness, the MOF-5 material is difficult to be utilized in industrial applications. Through the research efforts proposed by this study, the stability of the MOF-5 powder and membrane were studied. MOF-5 powder and a MOF-5 membrane were synthesized and characterized using XRD analysis. In an attempt to improve the stability of MOF-5 in air, methyl groups were added to the organic linker in order to hinder the interaction of water with the Zn4O core. This was done by replacing the terepthalic acid organic linker with 2,5-dimethyl terephthalic acid in the powder and membrane synthesis steps. The methyl-modified MOF-5 powder was found to be stable after several days of exposure to air while the MOF-5 powder exhibited significant crystalline change. The methyl-modified membrane was found to be unstable when synthesized using the same procedure as the MOF-5 membrane.

Contributors

Agent

Created

Date Created
2016-05

134902-Thumbnail Image.png

Bi-phase Synthesis of the Zirconium Metal-Organic Framework, UiO-66

Description

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.

Contributors

Agent

Created

Date Created
2016-12

135418-Thumbnail Image.png

Squeezing Out Electricity: Computer-Aided Design and Optimization of Electrodes of Solid Oxide Fuel Cells

Description

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important ste

Solid oxide fuel cells have become a promising candidate in the development of high-density clean energy sources for the rapidly increasing demands in energy and global sustainability. In order to understand more about solid oxide fuel cells, the important step is to understand how to model heterogeneous materials. Heterogeneous materials are abundant in nature and also created in various processes. The diverse properties exhibited by these materials result from their complex microstructures, which also make it hard to model the material. Microstructure modeling and reconstruction on a meso-scale level is needed in order to produce heterogeneous models without having to shave and image every slice of the physical material, which is a destructive and irreversible process. Yeong and Torquato [1] introduced a stochastic optimization technique that enables the generation of a model of the material with the use of correlation functions. Spatial correlation functions of each of the various phases within the heterogeneous structure are collected from a two-dimensional micrograph representing a slice of a solid oxide fuel cell through computational means. The assumption is that two-dimensional images contain key structural information representative of the associated full three-dimensional microstructure. The collected spatial correlation functions, a combination of one-point and two-point correlation functions are then outputted and are representative of the material. In the reconstruction process, the characteristic two-point correlation functions is then inputted through a series of computational modeling codes and software to generate a three-dimensional visual model that is statistically similar to that of the original two-dimensional micrograph. Furthermore, parameters of temperature cooling stages and number of pixel exchanges per temperature stage are utilized and altered accordingly to observe which parameters has a higher impact on the reconstruction results. Stochastic optimization techniques to produce three-dimensional visual models from two-dimensional micrographs are therefore a statistically reliable method to understanding heterogeneous materials.

Contributors

Agent

Created

Date Created
2016-05

136927-Thumbnail Image.png

Nanomaterials for Thermally Safe Lithium-Ion Batteries

Description

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP mixtures as well as graphene/LFP mixtures and a synthesized graphene/LFP nanocomposite. Graphene synthesis was attempted before purchasing graphene materials, and further exploration of graphene synthesis is recommended due to limitations in purchased product quality. While it was determined after extensive experimentation that the graphene/LFP nanocomposite could not be successfully synthesized according to current literature information, a mixed composite of graphene/LFP was successfully tested and found to have k = 0.23 W/m*K. This result provides a starting point for further thermal testing method development and k optimization in Li-ion battery electrode nanocomposites.

Contributors

Agent

Created

Date Created
2014-05

136965-Thumbnail Image.png

Carbon Dioxide Separation by Ceramic-Carbonate Dual-Phase Membranes and Process Design for Membrane Reactor in IGCC Power Plant

Description

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.

Contributors

Agent

Created

Date Created
2014-05

137034-Thumbnail Image.png

Synthesis and Characterization of Thin Supported PDMS/ZIF-71 Films for Pervaporative Biofuel Recovery

Description

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.

Contributors

Agent

Created

Date Created
2014-05

131642-Thumbnail Image.png

Computational Study of Ionic Liquids for Low Temperature MET Sensors

Description

Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent

Ionic liquids are salts with low melting temperatures that maintain their liquid form below 100 °C, or even at ambient temperature. Ionic liquids are conductive, electrochemically stable, non-volatile, and have a low vapor pressure, making them a class of excellent candidate materials for electrolytes in energy storage, electrodeposition, batteries, fuel cells, and supercapacitors. Due to their multiple advantages, the use of ionic liquids on Earth has been widely studied; however, further research must be done before their implementation in space. The extreme temperatures encountered during space travel and extra-terrestrial deployment have the potential to greatly affect the liquid electrolyte system. Examples of low temperature planetary bodies are the permanently shadowed sections of the moon or icy surfaces of Jupiter’s moons. Recent studies have explored the limits of glass transition temperatures for ionic liquid systems. The project is centered around the development of an ionic liquid system for a molecular electronic transducer seismometer that would be deployed on the low temperature system of Europa. For this project, molecular dynamics simulations used input intermolecular and intramolecular parameters that then simulated molecular interactions. Molecular dynamics simulations are based around the statistical mechanics of chemistry and help calculate equilibrium properties that are not easily calculated by hand. These simulations will give insight into what interactions are significant inside a ionic liquid solution. The simulations aim to create an understanding how ionic liquid electrolyte systems function at a molecular level. With this knowledge one can tune their system and its contents to adapt the systems properties to fit all environments the seismometers will experience.

Contributors

Agent

Created

Date Created
2020-05

132293-Thumbnail Image.png

Synthesis and Characterization of 2D Metal-organic Frameworks for Mixed-matrix Membrane Gas Separations

Description

Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available

Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and selectivity. Mixed matrix membranes (MMMs) containing two-dimensional (2D) metal-organic frameworks (MOFs) as fillers are a highly sought approach to redress this trade-off given their enhanced gas permeabilities and selectivities compared to the pure polymeric membrane. These MMMs are increasingly gaining attention by researchers due to their unique properties and wide small- and large-scale gas separation applications. However, straightforward and scalable methods for the synthesis of MOFs nanosheets have thus far been persistently elusive. This study reports the single-phase preparation, and characterization of MMMs with 2D MOFs nanosheets as fillers. The prepared MOF and the polymer matrix form the ‘dense’ MMMs which exhibit increased gas diffusion resistance, and thus improved separation abilities. The single-phase approach was more successful than the bi-phase at synthesizing the MOFs. The influence of sonication power and time on the characteristics and performance of the membranes are examined and discussed. Increasing the sonication power from 50% to 100% reduces the pore size. Additionally, the ultimate effect on the selectivity and permeance of the MMMs with different single gases is reported. Analysis of results with various gas mixers indicates further performance improvements in these MMMs could be achieved by increasing sonication time and tuning suitable membrane thicknesses. Reported results reveal that MMMs are excellent candidates for next-generation gas mixture separations, with potential applications in CO2 capture and storage, hydrogen recovery, alkene recovery from alkanes, and natural gas purification.

Contributors

Agent

Created

Date Created
2019-05