Matching Items (5)
Filtering by

Clear all filters

150480-Thumbnail Image.png
Description
Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served has to be met by renewable resources of energy such as solar, wind and biomass. Renewable resources provide energy at

Due to economic and environmental reasons, several states in the United States of America have a mandated renewable portfolio standard which requires that a certain percentage of the load served has to be met by renewable resources of energy such as solar, wind and biomass. Renewable resources provide energy at a low variable cost and produce less greenhouse gases as compared to conventional generators. However, some of the complex issues with renewable resource integration are due to their intermittent and non-dispatchable characteristics. Furthermore, most renewable resources are location constrained and are usually located in regions with insufficient transmission facilities. In order to deal with the challenges presented by renewable resources as compared to conventional resources, the transmission network expansion planning procedures need to be modified. New high voltage lines need to be constructed to connect the remote renewable resources to the existing transmission network to serve the load centers. Moreover, the existing transmission facilities may need to be reinforced to accommodate the large scale penetration of renewable resource. This thesis proposes a methodology for transmission expansion planning with large-scale integration of renewable resources, mainly solar and wind generation. An optimization model is used to determine the lines to be constructed or upgraded for several scenarios of varying levels of renewable resource penetration. The various scenarios to be considered are obtained from a production cost model that analyses the effects that renewable resources have on the transmission network over the planning horizon. A realistic test bed was created using the data for solar and wind resource penetration in the state of Arizona. The results of the production cost model and the optimization model were subjected to tests to ensure that the North American Electric Reliability Corporation (NERC) mandated N-1 contingency criterion is satisfied. Furthermore, a cost versus benefit analysis was performed to ensure that the proposed transmission plan is economically beneficial.
ContributorsHariharan, Sruthi (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2012
153878-Thumbnail Image.png
Description
The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis

The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply.

The recent technologies for power cable diagnosis and temperature monitoring system are described including their intrinsic limitations for cable health assessment. Power cable fault location methods are reviewed with two main categories: off-line and on-line data based methods.

As a diagnostic and fault location approach, a new passive methodology is introduced. This methodology is based on analyzing the resonant frequencies of the transfer function between the input and output of the power cable system. The equivalent pi model is applied to the resonant frequency calculation for the selected underground power cable transmission system.

The characteristics of the resonant frequencies are studied by analytical derivations and PSCAD simulations. It is found that the variation of load magnitudes and change of positive power factors (i.e., inductive loads) do not affect resonant frequencies significantly, but there is considerable movement of resonant frequencies under change of negative power factors (i.e., capacitive loads).

Power cable fault conditions introduce new resonant frequencies in accordance with fault positions. Similar behaviors of the resonant frequencies are shown in a transformer (TR) connected power cable system with frequency shifts caused by the TR impedance.

The resonant frequencies can be extracted by frequency analysis of power signals and the inherent noise in these signals plays a key role to measure the resonant frequencies. Window functions provide an effective tool for improving resonant frequency discernment. The frequency analysis is implemented on noise laden PSCAD simulation signals and it reveals identical resonant frequency characteristics with theoretical studies.

Finally, the noise levels of real voltage and current signals, which are acquired from an operating power plant, are estimated and the resonant frequencies are extracted by applying window functions, and these results prove that the resonant frequency can be used as an assessment for the internal changes in power cable parameters such as defects and faults.
ContributorsKim, Youngdeug (Author) / Holbert, Keith Edwin (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2015
155729-Thumbnail Image.png
Description
Electric power system security assessment is one of the most important requirements for operational and resource planning of the bulk power system ensuring safe operation of the power system for all credible contingencies. This deterministic approach usually provides a conservative criterion and can result in expensive bulk system expansion plans

Electric power system security assessment is one of the most important requirements for operational and resource planning of the bulk power system ensuring safe operation of the power system for all credible contingencies. This deterministic approach usually provides a conservative criterion and can result in expensive bulk system expansion plans or conservative operating limits. Furthermore, with increased penetration of converter-based renewable generation in the electric grid, the dynamics of the grid are changing. In addition, the variability and intermittency associated with the renewable energy sources introduce uncertainty in the electricity grid. Since security margins have direct economic impact on the utilities; more clarity is required regarding the basis on which security decisions are made. The main objective of this work is to provide an approach for risk-based security assessment (RBSA) to define dynamic reliability standards in future electricity grids. RBSA provides a measure of the security of the power system that combines both the likelihood and the consequence of an event.

A novel approach to estimate the impact of transient stability is presented by modeling several important protection systems within the transient stability analysis. A robust operational metric to quantify the impact of transient instability event is proposed that incorporates the effort required to stabilize any transiently unstable event. The effect of converter-interfaced renewable energy injection on system reliability is investigated us-ing RBSA. A robust RBSA diagnostics tool is developed which provides an interactive user interface where the RBSA results and contingency ranking reports can be explored and compared based on specific user inputs without executing time domain simulations or risk calculations, hence providing a fast and robust approach for handling large time domain simulation and risk assessment data. The results show that RBSA can be used effectively in system planning to select security limits. Comparison of RBSA with deterministic methods show that RBSA not only provides less conservative results, it also illustrates the bases on which such security decisions are made. RBSA helps in identifying critical aspects of system reliability that is not possible using the deterministic reliability techniques.
ContributorsDatta, Sohom (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2017
152216-Thumbnail Image.png
Description
This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is

This dissertation presents a novel current source converter topology that is primarily intended for single-phase photovoltaic (PV) applications. In comparison with the existing PV inverter technology, the salient features of the proposed topology are: a) the low frequency (double of line frequency) ripple that is common to single-phase inverters is greatly reduced; b) the absence of low frequency ripple enables significantly reduced size pass components to achieve necessary DC-link stiffness and c) improved maximum power point tracking (MPPT) performance is readily achieved due to the tightened current ripple even with reduced-size passive components. The proposed topology does not utilize any electrolytic capacitors. Instead an inductor is used as the DC-link filter and reliable AC film capacitors are utilized for the filter and auxiliary capacitor. The proposed topology has a life expectancy on par with PV panels. The proposed modulation technique can be used for any current source inverter where an unbalanced three-phase operation is desires such as active filters and power controllers. The proposed topology is ready for the next phase of microgrid and power system controllers in that it accepts reactive power commands. This work presents the proposed topology and its working principle supported by with numerical verifications and hardware results. Conclusions and future work are also presented.
ContributorsBush, Craig R (Author) / Ayyanar, Raja (Thesis advisor) / Karam, Lina (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
154325-Thumbnail Image.png
Description
Constraint relaxation by definition means that certain security, operational, or financial constraints are allowed to be violated in the energy market model for a predetermined penalty price. System operators utilize this mechanism in an effort to impose a price-cap on shadow prices throughout the market. In addition, constraint relaxations can

Constraint relaxation by definition means that certain security, operational, or financial constraints are allowed to be violated in the energy market model for a predetermined penalty price. System operators utilize this mechanism in an effort to impose a price-cap on shadow prices throughout the market. In addition, constraint relaxations can serve as corrective approximations that help in reducing the occurrence of infeasible or extreme solutions in the day-ahead markets. This work aims to capture the impact constraint relaxations have on system operational security. Moreover, this analysis also provides a better understanding of the correlation between DC market models and AC real-time systems and analyzes how relaxations in market models propagate to real-time systems. This information can be used not only to assess the criticality of constraint relaxations, but also as a basis for determining penalty prices more accurately.

Constraint relaxations practice was replicated in this work using a test case and a real-life large-scale system, while capturing both energy market aspects and AC real-time system performance. System performance investigation included static and dynamic security analysis for base-case and post-contingency operating conditions. PJM peak hour loads were dynamically modeled in order to capture delayed voltage recovery and sustained depressed voltage profiles as a result of reactive power deficiency caused by constraint relaxations. Moreover, impacts of constraint relaxations on operational system security were investigated when risk based penalty prices are used. Transmission lines in the PJM system were categorized according to their risk index and each category was as-signed a different penalty price accordingly in order to avoid real-time overloads on high risk lines.

This work also extends the investigation of constraint relaxations to post-contingency relaxations, where emergency limits are allowed to be relaxed in energy market models. Various scenarios were investigated to capture and compare between the impacts of base-case and post-contingency relaxations on real-time system performance, including the presence of both relaxations simultaneously. The effect of penalty prices on the number and magnitude of relaxations was investigated as well.
ContributorsSalloum, Ahmed (Author) / Vittal, Vijay (Thesis advisor) / Hedman, Kory (Thesis advisor) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016