Matching Items (10)
Filtering by

Clear all filters

151122-Thumbnail Image.png
Description
Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental

Parental care provides many benefits to offspring. One widely realized benefit is enhanced regulation of offspring's thermal environment. The developmental thermal environment during development can be optimized behaviorally through nest site selection and brooding, and it can be further enhanced by physiological heat production. In fact, enhancement of the developmental thermal environment has been proposed as the initial driving force for the evolution of endothermy in bird and mammals. I used pythons (Squamata: Pythonidae) to expand existing knowledge of behavioral and physiological parental tactics used to regulate offspring thermal environment. I first demonstrated that brooding behavior in the Children's python (Antaresia childreni) is largely driven by internal mechanisms, similar to solitary birds, suggesting that the early evolution of the parent-offspring association was probably hormonally driven. Two species of python are known to be facultatively thermogenic (i.e., are endothermic during reproduction). I expand current knowledge of thermogenesis in Burmese pythons (Python molurus) by demonstrating that females use their own body temperature to modulate thermogenesis. Although pythons are commonly cited as thermogenic, the actual extent of thermogenesis within the family Pythonidae is unknown. Thus, I assessed the thermogenic capability of five previously unstudied species of python to aid in understanding phylogenetic, morphological, and distributional influences on thermogenesis in pythons. Results suggest that facultative thermogenesis is likely rare among pythons. To understand why it is rare, I used an artificial model to demonstrate that energetic costs to the female likely outweigh thermal benefits to the clutch in species that do not inhabit cooler latitudes or lack large energy reserves. In combination with other studies, these results show that facultative thermogenesis during brooding in pythons likely requires particular ecological and physiological factors for its evolution.
ContributorsBrashears, Jake (Author) / DeNardo, Dale (Thesis advisor) / Harrison, Jon (Committee member) / Deviche, Pierre (Committee member) / McGraw, Kevin (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
154182-Thumbnail Image.png
Description
Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these

Small-scale fisheries are globally ubiquitous, employing more than 99% of the world’s fishers and providing over half of the world’s seafood. However, small-scale fisheries face many management challenges including declining catches, inadequate resources and infrastructure, and overcapacity. Baja California Sur, Mexico (BCS) is a region with diverse small-scale fisheries; these fisheries are intense, poorly regulated, and overlap with foraging hot spots of endangered sea turtles. In partnership with researchers, fishers, managers, and practitioners from Mexico and the United States, I documented bycatch rates of loggerhead turtles at BCS that represent the highest known megafauna bycatch rates worldwide. Concurrently, I conducted a literature review that determined gear modifications were generally more successful than other commonly used fisheries management strategies for mitigating bycatch of vulnerable megafauna including seabirds, marine mammals, and sea turtles. I then applied these results by partnering with researchers, local fishers, and Mexico’s federal fisheries science agency to develop and test two gear modifications (i.e. buoyless and illuminated nets) in operating net fisheries at BCS as potential solutions to reduce bycatch of endangered sea turtles, improve fisheries sustainability, and maintain fisher livelihoods. I found that buoyless nets significantly reduced mean turtle bycatch rates by 68% while maintaining target catch rates and composition. By contrast, illuminated nets did not significantly reduce turtle bycatch rates across day-night periods, although they reduced mean turtle bycatch rates by 50% at night. Illuminated nets, however, significantly reduced mean rates of total bycatch biomass by 34% across day-night periods while maintaining target fish catch and market value. I conclude with a policy analysis of the unilateral identification of Mexico by the U.S. State Department under section 610 of the Magnusson-Stevens Fishery Conservation and Management Act for failure to manage bycatch of loggerhead turtles at BCS. Taken together, the gear modifications developed and tested here represent promising bycatch mitigation solutions with strong potential for commercial adoption, but fleet-wide conversion to more selective and turtle-friendly gear (e.g. hook and line and/or traps) at BCS, coupled with coordinated international conservation action, is ultimately needed to eliminate sea turtle bycatch and further improve fisheries sustainability.
ContributorsSenko, Jesse (Author) / Smith, Andrew (Thesis advisor) / Boggess, May (Committee member) / Chhetri, Nalini (Committee member) / Jenkins, Lekelia (Committee member) / Minteer, Ben (Committee member) / Arizona State University (Publisher)
Created2015
156242-Thumbnail Image.png
Description
Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape-

Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape- and patch-based studies that have caused significant uncertainty concerning fragmentation’s effects on biological communities. Here I tested the hypothesis that habitat fragmentation alters biological communities by creating hierarchically nested selective pressures across plot-, patch-, and landscape-scales using woody plant community datasets from Thousand Island Lake, China. In this archipelago edge-effects had little impact on species-diversity. However, the amount of habitat in the surrounding landscape had a positive effect on species richness at the patch-scale and sets of small islands accumulated species faster than sets of large islands of equal total size at the landscape-scale. In contrast, at the functional-level edge-effects decreased the proportion of shade-tolerant trees, island-effects increased the proportion of shade- intolerant trees, and these two processes interacted to alter the functional composition of the regional pool when the total amount of habitat in the landscape was low. By observing interdependent fragmentation-mediated effects at each scale, I found support for the hypothesis that habitat fragmentation’s effects are hierarchically structured.
ContributorsWilson, Maxwell (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew (Committee member) / Hall, Sharon (Committee member) / Jiang, Lin (Committee member) / Cease, Arianne (Committee member) / Arizona State University (Publisher)
Created2018
134327-Thumbnail Image.png
Description
The Mexican gray wolf (Canis lupus baileyi) is a genetically distinct subspecies of the gray wolf (Canis lupus) that was driven to the brink of extinction as a result of human persecution. The wolf is listed as Endangered under the Endangered Species Act, and a recovery program is underway in

The Mexican gray wolf (Canis lupus baileyi) is a genetically distinct subspecies of the gray wolf (Canis lupus) that was driven to the brink of extinction as a result of human persecution. The wolf is listed as Endangered under the Endangered Species Act, and a recovery program is underway in Arizona and New Mexico to restore its population. However, the wolf is struggling to recover due to high mortality, which is a result of continued human hostility toward it. This thesis examines historical and current human attitudes toward the wolf and the implications that they have had on the extermination and recovery of the subspecies. An overview is given of wolf biology, the history of wolf extermination and recovery, and recent events relating to the recovery of the wolf. Negative impacts on ranching, hunting, and human safety are the main reasons for opposition toward wolves and wolf recovery; these concerns are analyzed, and solutions to them are proposed, with the goal of addressing them while fostering non-lethal coexistence with the wolf. In addition, opposition to wolves and wolf recovery is tied in with larger socio-political issues and is influenced by the representation of the wolf in culture; these issues in the context of wolves are also analyzed.
ContributorsLenk, Heather Nicole (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Brown, David E. (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137215-Thumbnail Image.png
Description
Conservation is a complicated entity consisting of a multitude of professional fields including social issues, cultural issues, and physical science. This thesis evaluates the positive and negative aspects of two broad types of conservation: top down fortress conservation and bottom up community-based conservation. Fortress conservation has many negative aspects, such

Conservation is a complicated entity consisting of a multitude of professional fields including social issues, cultural issues, and physical science. This thesis evaluates the positive and negative aspects of two broad types of conservation: top down fortress conservation and bottom up community-based conservation. Fortress conservation has many negative aspects, such as displacing human communities and preventing utilization of resources. However, it also has positive aspects, such as preventing the destruction of delicate ecosystems and slowing down extinctions. Community-based conservation is more inclusive and focuses on including the indigenous populations located within the proposed conservation site in the decision-making process. Its negatives include having an anthropocentric goal instead of valuing nature's intrinsic values. Understanding the differences inherent in these two methods is necessary in order to implement a conservation network with the highest chance for success.
ContributorsFink, Laurel Berylline (Author) / Smith, Andrew (Thesis director) / Collins, James (Committee member) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137162-Thumbnail Image.png
Description
Consumption of seafood poses a substantial threat to global biodiversity. Chemical contamination found in both wild-caught and farmed seafood also presents significant health risks to consumers. Flame retardants, used in upholstery, plastics, clothing, and other products to reduce fire danger, are of particular concern as they are commonly found in

Consumption of seafood poses a substantial threat to global biodiversity. Chemical contamination found in both wild-caught and farmed seafood also presents significant health risks to consumers. Flame retardants, used in upholstery, plastics, clothing, and other products to reduce fire danger, are of particular concern as they are commonly found in the marine environment and permeate the tissues of fish that are sold for consumption via multiple pathways. By summarizing various metrics of sustainability and the mercury content in consumed species of fish and shellfish, researchers have found that high levels of chemical contamination was linked with lesser fishery sustainability. I conducted a literature review of flame retardant content in seafood to further compare contamination and sustainability in addition to the initial analysis with mercury. My review suggests that the widespread issue of fishery collapse could be alleviated by demonstrating to stakeholders that many unsustainable fish stocks are mutually disadvantageous for both human consumers and the environment. Future research should address the need for the collection of data that better represent actual global contaminant concentrations in seafood.
ContributorsNoziglia, Andrea Joyce (Author) / Gerber, Leah (Thesis director) / Smith, Andrew (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2014-05
155626-Thumbnail Image.png
Description
Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the

Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the vegetative community pose a great challenge to such balance between an organism and its environment. This is especially true in the Arabian Desert, where climate conditions are extreme and environmental disturbances substantial. This study combined laboratory and field components to enhance our understanding of dhub (Uromastyx aegyptius) ecophysiology and determine whether habitat protection influences dhub behavior and physiology.

Results of this study showed that while body mass and body condition consistently diminished as the active season progressed, they were both greater in protected habitats compared to non-protected habitats, regardless of season. Dhubs surface activity and total body water decreased while evaporative water loss and body temperature increased as the active season progressed and ambient temperature got hotter. Total body water was also significantly affected by habitat protection.

Overall, this study revealed that, while habitat protection provided more vegetation, it had little effect on seasonal changes in surface activity. While resource availability in protected areas might allow for larger dhub populations, unprotected areas showed similar body morphometrics, activity, and body temperatures. By developing an understanding of how different coping strategies are linked to particular ecological, morphological, and phylogenetic traits, we will be able to make more accurate predictions regarding the vulnerability of species. By combining previous studies pertaining to conservation of protected species with the results of my study, a number of steps in ecosystem management are recommended to help in the preservation of dhubs in the Kuwaiti desert.
ContributorsAl-Sayegh, Mohammed (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / Smith, Andrew (Committee member) / Sabo, John (Committee member) / Majeed, Qais (Committee member) / Arizona State University (Publisher)
Created2017
Description
American youth are not well exposed to animal- and nature-related careers. This is especially important to consider due to the recent push to be more environmentally conscious. In addition, youth are spending less time outside and more time in front of screens. This is driving down biophilia strength. The combination

American youth are not well exposed to animal- and nature-related careers. This is especially important to consider due to the recent push to be more environmentally conscious. In addition, youth are spending less time outside and more time in front of screens. This is driving down biophilia strength. The combination of a weaker connection with nature and more screen time has been connected to a new condition named Nature-Deficit Disorder. In order to expose youth to animal- and nature-related careers while attempting to combat the growing presence of Nature-Deficit Disorder, a three day teaching program named Wild Careers was created. This program was presented to teens in December 2015 through a partnership with the education department of Arizona Animal Welfare League. The curriculum was centered on highlighting relevant careers and background information. Topics such as animal welfare and conservation were taught as cornerstones during the program due to their encompassing importance to the career fields in question. It was felt to be important to inform participants about the context of these fields through specially planned activities and guest speakers. Participants were challenged to conduct online research, think critically, and get hands-on during this program. Wild Careers also exposed the participants to animals and the relevant species management stories. The surveys given before and after the presentation of the created curriculum provided evidence that supported an increased understanding of careers and enjoyment of participants. I propose that other non-formal teaching environments should be created that target exposing youth to animals, nature, and related careers.
ContributorsTaubel, Samantha Kay (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Arthur, Emilie (Committee member) / Division of Teacher Preparation (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158549-Thumbnail Image.png
Description
Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter),

Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter), which have been found to pollute virtually every marine and terrestrial ecosystem on the planet. This thesis explored the transfer of plastic pollutants from consumer products into the built water environment and ultimately into global aquatic and terrestrial ecosystems.

A literature review demonstrated that municipal sewage sludge produced by wastewater treatment plants around the world contains detectable quantities of microplastics. Application of sewage sludge on land was shown to represent a mechanism for transfer of microplastics from wastewater into terrestrial environments, with some countries reporting as high as 113 ± 57 microplastic particles per gram of dry sludge.

To address the notable shortcoming of inconsistent reporting practices for microplastic pollution, this thesis introduced a novel, online calculator that converts the number of plastic particles into the unambiguous metric of mass, thereby making global studies on microplastic pollution directly comparable.

This thesis concludes with an investigation of a previously unexplored and more personal source of plastic pollution, namely the disposal of single-use contact lenses and an assessment of the magnitude of this emerging source of environmental pollution. Using an online survey aimed at quantifying trends with the disposal of lenses in the US, it was discovered that 20 ± 0.8% of contact lens wearers flushed their used lenses down the drain, amounting to 44,000 ± 1,700 kg y-1 of lens dry mass discharged into US wastewater.

From the results it is concluded that conventional and medical microplastics represent a significant global source of pollution and a long-term threat to ecosystems around the world. Recommendations are provided on how to limit the entry of medical microplastics into the built water environment to limit damage to ecosystems worldwide.
ContributorsRolsky, Charles (Author) / Halden, Rolf (Thesis advisor) / Green, Matthew (Committee member) / Neuer, Susanne (Committee member) / Polidoro, Beth (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2020