Matching Items (19)
Filtering by

Clear all filters

134327-Thumbnail Image.png
Description
The Mexican gray wolf (Canis lupus baileyi) is a genetically distinct subspecies of the gray wolf (Canis lupus) that was driven to the brink of extinction as a result of human persecution. The wolf is listed as Endangered under the Endangered Species Act, and a recovery program is underway in

The Mexican gray wolf (Canis lupus baileyi) is a genetically distinct subspecies of the gray wolf (Canis lupus) that was driven to the brink of extinction as a result of human persecution. The wolf is listed as Endangered under the Endangered Species Act, and a recovery program is underway in Arizona and New Mexico to restore its population. However, the wolf is struggling to recover due to high mortality, which is a result of continued human hostility toward it. This thesis examines historical and current human attitudes toward the wolf and the implications that they have had on the extermination and recovery of the subspecies. An overview is given of wolf biology, the history of wolf extermination and recovery, and recent events relating to the recovery of the wolf. Negative impacts on ranching, hunting, and human safety are the main reasons for opposition toward wolves and wolf recovery; these concerns are analyzed, and solutions to them are proposed, with the goal of addressing them while fostering non-lethal coexistence with the wolf. In addition, opposition to wolves and wolf recovery is tied in with larger socio-political issues and is influenced by the representation of the wolf in culture; these issues in the context of wolves are also analyzed.
ContributorsLenk, Heather Nicole (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Brown, David E. (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133586-Thumbnail Image.png
Description
Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several

Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several control and management practices, including biological control, have been implemented in these countries in the past to control the locusts and reduce their impact on crop and vegetation, however, effective long-term control and management practices will require a detail understanding of how the predominant locust species in this region responds to resource variation. Research has shown that there is strong evidence that locusts, and many other organisms, will actively balance dietary macronutrients (protein, carbohydrates, and lipids) to optimize growth, survival, and/or reproduction. A study by Cease et. al, 2017, on the dietary preferences of the Mongolian locust (Oedaleus asiaticus) showed that it prefers diets that are high in carbohydrates over diets that are high in protein, in this case locusts self-selected a 1:2 ratio of protein:carbohydrate. This and many other studies provide vital insight into the nutritional and feeding preferences of these locust species but the effects that this difference in protein: carbohydrate preferences has on growth, egg production, flight potential, and survival has yet to be fully explored, hence, this study investigates the effects that nitrogen fertilization of wheatgrass will have on the growth, egg production, survival, and flight muscle mass of the South American locust in a controlled, laboratory environment.
ContributorsManneh, Balanding (Author) / Cease, Arianne (Thesis director) / Overson, Rick (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137468-Thumbnail Image.png
Description
This thesis examines how the wording of proposed government policies can affect the level of public support that a given policy generates. By surveying 158 Phoenix residents, I tested the differing degrees of support that voters would have for a proposed city ordinance, which would stop Homeowners' Associations from restricting

This thesis examines how the wording of proposed government policies can affect the level of public support that a given policy generates. By surveying 158 Phoenix residents, I tested the differing degrees of support that voters would have for a proposed city ordinance, which would stop Homeowners' Associations from restricting the use of native desert plants in residential landscaping. The ordinance was framed in the survey as a self-governance issue or a water conservation issue. I found that the message frames had little effect on the overall level of support for the ordinance, since most residents had moderate support for the policy. However, participants who were either residents of Homeowners' Associations that did not have native plant restrictions, or native residents of Arizona, demonstrated greater levels of support for the self-determination frame of the proposed ordinance. These findings have implications for policy makers who use targeted messages to establish pro-environmental policies at the local level.
ContributorsSmith, Mary Hannah (Author) / Darnall, Nicole (Thesis director) / Ramirez, Mark (Committee member) / Tetreault, Colin (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor)
Created2013-05
134587-Thumbnail Image.png
Description
Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona

Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona Game and Fish Department has worked for the last 12 years to recover populations of Chiricahua Leopard Frogs to ensure the species survives in the Huachuca Mountains in southeastern Arizona. During this time, the department tested for Bd throughout their release sites. As a result of large differences in prevalence noted in prior sampling for Bd in Miller and Ramsey canyons, I investigated abiotic factors that could explain these differences. I analyzed water samples from two canyons in the Huachuca Mountains and used nutrient analysis and filter extraction to test for differences in abiotic factors between these two sites that could affect Bd transmission. Results show that Ramsey Canyon was a positive site for Bd, while Miller Canyon remained negative. Results from water temperature estimates as well as a test for 30 elements revealed possible reasons for differences in Bd transmission between the two canyons.
ContributorsSmith, Paige Gabrielle (Author) / Collins, James P. (Thesis director) / Franklin, Janet (Committee member) / Sredl, Michael J. (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133253-Thumbnail Image.png
Description
Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert

Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert dinitrogen (N2) gas. Oak Creek is similarly nitrogen limited, but NO3- concentration in reaches surrounded by agriculture can be double that of other reaches. We employed a denitrification enzyme assay (DEA) to compare potential denitrification rate between differing land uses in Oak Creek and measured whole system N2 flux using a membrane inlet mass spectrometer to compare differences in actual denitrification rates at Sycamore and Oak Creek. We anticipated that NO3- would be an important limiting factor for denitrifiers; consequentially, agricultural land use reaches within Oak Creek would have the highest potential denitrification rate. We expected in situ denitrification rate to be higher in Oak Creek than Sycamore Creek due to elevated NO3- concentration, higher discharge, and larger streambed surface area. DEA results are forthcoming, but analysis of potassium chloride (KCl) extraction data showed that there were no significant differences between sites in sediment extractable NO3- on either a dry mass or organic mass basis. Whole-reach denitrification rate was inconclusive in Oak Creek, and though a significant positive flux in N2 from upstream to downstream was measured in Sycamore Creek, the denitrification rate was not significantly different from 0 after accounting for reaeration, suggesting that denitrification does not account for a significant portion of the NO3- uptake in Sycamore Creek. Future work is needed to address the specific factors limiting denitrification in this system.
ContributorsCaulkins, Corey Robert (Author) / Grimm, Nancy (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137696-Thumbnail Image.png
Description
City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as

City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as denitrification, direct plant uptake, and soil accumulation. Emergent macrophytes provide direct uptake of N and improve conditions for microbially-mediated N processing. The role of different macrophytes species, however, is less understood and has primarily been examined in mesocosm and microcosm experiments and in mesic environments. I examined the effects of community composition on N removal and processing at the whole ecosystem scale in an aridland, constructed wetland (42 ha) through: 1) quantifying above- and belowground biomass and community composition from July 2011 \u2014 November 2012 using a non-destructive allometric technique, and; 2) quantifying macrophyte N content and direct macrophyte N uptake over the 2012 growing season. Average peak biomass in July 2011 & 2012 was 2,930 g dw/m2 and 2,340 g dw/m2, respectively. Typha spp. (Typha domingensis and Typha latifolia) comprised the majority (approximately 2/3) of live aboveground biomass throughout the sampling period. No statistically significant differences were observed in macrophyte N content among the six species present, with an overall average of 1.68% N in aboveground tissues and 1.29% N in belowground tissues. Per unit area of wetland, Typha spp. retained the most N (22 g/m2); total N retained by all species was 34 g/m2. System-wide direct plant N uptake was markedly lower than N input to the system and thus represented a small portion of system N processing. Soil accumulation of N also played a minor role, leaving denitrification as the likely process responsible for the majority of system N processing. Based on a literature review, macrophyte species composition likely influences denitrification through oxygen diffusion into soils and through the quality and quantity of carbon in leaf litter. While this study and the literature indicates Typha spp. may be the best species to promote wetland N processing, other considerations (e.g., bird habitat) and conditions (e.g., type of wastewater being treated) likely make mixed stands of macrophytes preferable in many applications. Additionally, this study demonstrated the importance of urban wetlands as scientific laboratories for scientists of all ages and as excellent stepping-off points for experiments of science-policy discourse.
ContributorsWeller, Nicholas Anton (Author) / Daniel L., Childers (Thesis director) / Grimm, Nancy (Committee member) / Turnbull, Laura (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Graduate College (Contributor)
Created2013-05
Description
American youth are not well exposed to animal- and nature-related careers. This is especially important to consider due to the recent push to be more environmentally conscious. In addition, youth are spending less time outside and more time in front of screens. This is driving down biophilia strength. The combination

American youth are not well exposed to animal- and nature-related careers. This is especially important to consider due to the recent push to be more environmentally conscious. In addition, youth are spending less time outside and more time in front of screens. This is driving down biophilia strength. The combination of a weaker connection with nature and more screen time has been connected to a new condition named Nature-Deficit Disorder. In order to expose youth to animal- and nature-related careers while attempting to combat the growing presence of Nature-Deficit Disorder, a three day teaching program named Wild Careers was created. This program was presented to teens in December 2015 through a partnership with the education department of Arizona Animal Welfare League. The curriculum was centered on highlighting relevant careers and background information. Topics such as animal welfare and conservation were taught as cornerstones during the program due to their encompassing importance to the career fields in question. It was felt to be important to inform participants about the context of these fields through specially planned activities and guest speakers. Participants were challenged to conduct online research, think critically, and get hands-on during this program. Wild Careers also exposed the participants to animals and the relevant species management stories. The surveys given before and after the presentation of the created curriculum provided evidence that supported an increased understanding of careers and enjoyment of participants. I propose that other non-formal teaching environments should be created that target exposing youth to animals, nature, and related careers.
ContributorsTaubel, Samantha Kay (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Arthur, Emilie (Committee member) / Division of Teacher Preparation (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135490-Thumbnail Image.png
Description
Duckponics is an unconventional form of aquaponics that has recently been implemented by a small community in Washington State as an experiment in sustainable methods of food production. The community created the Duckponics system to test the possibility of using the waste of ducks present on the farm to fertilize

Duckponics is an unconventional form of aquaponics that has recently been implemented by a small community in Washington State as an experiment in sustainable methods of food production. The community created the Duckponics system to test the possibility of using the waste of ducks present on the farm to fertilize crop plants. This research paper examines aspects of the nitrogen cycle within this system to determine the efficacy of nitrogen removal by plants and microbes. More specifically, the research examines (1) the microbial activity occurring in selected beds of the system, (2) the ability of hydroponic grow beds to retain inorganic nitrogen, and (3) how periodic flushing of the system affects nitrogen retention. Water data was collected in all system tanks using aquarium test strips, but water samples were collected for flow injection analysis in (1) one of the grow beds, (2) the duck pond, and (3) a control bed with no plants but filled with gravel and inoculated with the same bacteria from the grow bed. Samples were then analyzed for ammonia (NH4+-N) and combined nitrite and nitrate (NOx-N) concentrations. The results show that the treatment type (control, duck pond, or grow bed) was a significant (p<0.05) predictor of NH4+-N, NOx-N, and total inorganic nitrogen (TIN) in the porewater of the treatment beds. The grow bed was found to have 100% removal of TIN, whereas the control had 0% TIN removal (195% increase). Timing of the sample in relation to the flushing events was a moderately significant predictor of TIN, NH4+-N and NOx-N in the duck pond (p = 0.07 for TIN, p = 0.12 for NH4+-N, p = 0.11 for NOx-N), with an overall decrease in TIN after flood pulses. NH4+-N concentrations at the inlet and outlet were found to be significantly different in the grow bed (p=0.037), but not the control, and moderately significantly different (p<0.15) for NOx-N and TIN in the grow bed (p=0.072 for NOx-N, p=0.075 for TIN), but significant for the control (p=0.043). These findings show evidence of nitrification in the grow bed and control, plant presence significantly contributing to nitrogen removal in the grow bed, and some hydrologic flushing of NOx-N out of the duck pond during pump cycles.
ContributorsPanfil, Daniela Kristiina (Author) / Doucette, Sonya (Thesis director) / Palta, Monica (Committee member) / Moody, Jack (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132078-Thumbnail Image.png
Description
Human activities around the world are threatening scores of wildlife species, pushing them closer to extinction. In order to address what many conservationists view as a global biodiversity crisis, it is vital that more people are inspired to care about wild animals and motivated to act in ways that hel

Human activities around the world are threatening scores of wildlife species, pushing them closer to extinction. In order to address what many conservationists view as a global biodiversity crisis, it is vital that more people are inspired to care about wild animals and motivated to act in ways that help protect them. The up-close experiences and personal connections that people form with wild animals in zoos accredited by the Association of Zoos and Aquariums (AZA) or the World Association of Zoos and Aquariums (WAZA) can help achieve this. However, it is not very well understood how different types of encounters within these zoos may inspire conservation mindedness and pro-environmental behaviors. During this thesis project, surveys were conducted at the AZA-accredited Arizona Center for Nature Conservation/Phoenix Zoo to understand how interactive, hands-on animal experiences within zoos differ from passively viewing zoo animals when it comes to inspiring people to care about conservation. The Phoenix Zoo is home to two different species of giraffes, and guests can view them from the front of the Savanna Exhibit. Guests can also participate in the Giraffe Encounter, which is a much more interactive, hands-on experience. After surveying guests at both locations, the results showed that fewer people at the Giraffe Encounter responded that they often engage in pro-environmental behaviors. This may indicate that the people who participated in the Giraffe Encounter came to the zoo more for recreation and entertainment than to learn about wildlife. Despite this, more people learned something new about nature or conservation at the Giraffe Encounter than they did at the Savanna Exhibit. On average, guests also felt that the Giraffe Encounter motivated them to learn more about how to help animals in the wild than the Savanna Exhibit did. Overall, there is a strong correlation between having an interactive, hands-on experience with a zoo animal and caring more about wildlife conservation. However, more research still needs to be done in order to conclusively provide evidence for causation.
ContributorsBurgess, Christa Noell (Author) / Schoon, Michael (Thesis director) / Minteer, Ben (Committee member) / Allard, Ruth (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12