Matching Items (9)
Filtering by

Clear all filters

133420-Thumbnail Image.png
Description
The purpose of this thesis research project is to explore blockchain technology and its present and future applications within supply chain management. Emerging blockchain technologies, both public and private, are already showing great promise for a number of applications in and outside supply chain management. Our sole focus is to

The purpose of this thesis research project is to explore blockchain technology and its present and future applications within supply chain management. Emerging blockchain technologies, both public and private, are already showing great promise for a number of applications in and outside supply chain management. Our sole focus is to understand the fundamentals of blockchain, smart contracts, current applications in supply chain, and the future possibilities for blockchain to shape global supply chains. Many have theorized about how private blockchains can be implemented and used; however, there is little research to date that has collected and explored the actual use cases in industry today. The mission of this research paper is to separate theory from the current state of the technology and provide a clearer understanding of where the technology is headed in the near future. We aim to produce a work that will provide a comprehensive description and commentary on current use cases for the education of students and industry professionals alike. With any new technological developments, terminology and technicalities can be paralyzing, and this is particularly true for blockchain technology. For this project, our goal was to create a document that cuts through the complexities and allows a non-technical audience to gain a strong foundational understanding of blockchain's potential and current limitations within supply chains. Provided this, some highly technical concepts and implementation details will not be explored due to the complexity and minimal understanding even amongst industry experts. As future supply chain professionals, we are motivated to further our understanding of blockchain technologies and the potential for this technology to shape the future of supply chain management.
ContributorsBecker, Logan (Co-author) / Falco, Alexander (Co-author) / Murphy, Thomas Brian (Co-author) / Taylor, Todd (Thesis director) / Wiedmer, Robert (Committee member) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
148445-Thumbnail Image.png
Description

This is a test plan document for Team Aegis' capstone project that has the goal of mitigating single event upsets in NAND flash memory caused by space radiation.

ContributorsForman, Oliver Ethan (Co-author) / Smith, Aiden (Co-author) / Salls, Demetra (Co-author) / Kozicki, Michael (Thesis director) / Hodge, Chris (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132247-Thumbnail Image.png
Description
The purpose of this thesis is to imagine and predict the ways in which humans will utilize technology to feed the world population in the 21st century, in spite of significant challenges we have not faced before. This project will first thoroughly identify and explain the most pressing challenges the

The purpose of this thesis is to imagine and predict the ways in which humans will utilize technology to feed the world population in the 21st century, in spite of significant challenges we have not faced before. This project will first thoroughly identify and explain the most pressing challenges the future will bring in climate change and population growth; both projected to worsen as time goes on. To guide the prediction of how technology will impact the 21st century, a theoretical framework will be established, based upon the green revolution of the 20th century. The theoretical framework will summarize this important historical event, and analyze current thought concerning the socio-economic impacts of the agricultural technologies introduced during this time. Special attention will be paid to the unequal disbursement of benefits of this green revolution, and particularly how it affected small rural farmers. Analysis of the technologies introduced during the green revolution will be used to predict how 21st century technologies will further shape the agricultural sector. Then, the world’s current food crisis will be compared to the crisis that preceded the green revolution. A “second green revolution” is predicted, and the agricultural/economic impact of these advances is theorized based upon analysis of farming advances in the 20th century.
ContributorsWilson, Joshua J (Author) / Strumsky, Deborah (Thesis director) / Benjamin, Victor (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131600-Thumbnail Image.png
Description
This study aims to examine how the use of consensus-based transactions, smart contracts,and interoperability, provided by blockchain, may benefit the blood plasma industry. Plasmafractionation is the process of separating blood into multiple components to garner benefitsof increased lifespan, specialized allocation, and decreased waste, thereby creating a morecomplex and flexible supply

This study aims to examine how the use of consensus-based transactions, smart contracts,and interoperability, provided by blockchain, may benefit the blood plasma industry. Plasmafractionation is the process of separating blood into multiple components to garner benefitsof increased lifespan, specialized allocation, and decreased waste, thereby creating a morecomplex and flexible supply chain. Traditional applications of blockchain are developed onthe basis of decentralization—an infeasible policy for this sector due to stringent governmentregulations, such as HIPAA. However, the trusted nature of the relations in the plasmaindustry’s taxonomy proves private and centralized blockchains as the viable alternative.Implementations of blockchain are widely seen across pharmaceutical supply chains to combatthe falsification of possibly afflictive drugs. This system is more difficult to manage withblood, due to the quick perishable time, tracking/tracing of recycled components, and thenecessity of real-time metrics. Key attributes of private blockchains, such as digital identity,smart contracts, and authorized ledgers, may have the possibility of providing a significantpositive impact on the allocation and management functions of blood banks. Herein, we willidentify the economy and risks of the plasma ecosystem to extrapolate specific applications forthe use of blockchain technology. To understand tangible effects of blockchain, we developeda proof of concept application, aiming to emulate the business logic of modern plasma supplychain ecosystems adopting a blockchain data structure. The application testing simulates thesupply chain via agent-based modeling to analyze the scalability, benefits, and limitations ofblockchain for the plasma fractionation industry.
ContributorsVallabhaneni, Saipavan K (Author) / Boscovic, Dragan (Thesis director) / Kellso, James (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131446-Thumbnail Image.png
Description
Blockchain technology has the potential to be an effective form of identity management and human trafficking prevention as an identity solution. The topic of this thesis originates from the United Nation’s Sustainable Development Goal to create a form of identity for every individual on the plant by the year 2030.

Blockchain technology has the potential to be an effective form of identity management and human trafficking prevention as an identity solution. The topic of this thesis originates from the United Nation’s Sustainable Development Goal to create a form of identity for every individual on the plant by the year 2030. This research analyzed and compared primarily global databases with information on human trafficking populations and unidentified populations to understand both issues, and the intersections of their populations. This is followed by a discussion of Blockchain technology’s attributes and a Blockchain identities potential characteristic. This research concludes that a Blockchain based identity can be used to mitigate human trafficking by creating various forms of identity for affected populations. Four basic factors of Blockchain technology can be utilized through public and private partnerships to address different parts of the AMP model for the cycle of human trafficking. The conclusion that Blockchain is a potential solution to the analyzed issues comes with caution and alongside an examination of the risk factors involved in implementing this technology and the future investigation necessary to test this conclusion. Risk factors with using blockchain technology as a solution are examined to help direct future research on the topic. The conclusion is based off Blockchain’s ability to address specific problems in human trafficking and the global identity crisis (GIC) that were found in the analysis.
ContributorsMcnamara, Mary Patricia (Author) / Wiedmer, Robert (Thesis director) / Calvin, Samantha (Committee member) / Department of Supply Chain Management (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132736-Thumbnail Image.png
Description
The purpose of this research paper is to examine the fundamentals of blockchain technology and how the application of blockchain could serve as a future platform for identity. An identity is used, as the name suggests, to identify who or what an entity is. Although seen as a trivial concept,

The purpose of this research paper is to examine the fundamentals of blockchain technology and how the application of blockchain could serve as a future platform for identity. An identity is used, as the name suggests, to identify who or what an entity is. Although seen as a trivial concept, defining what truly makes up an identity can become quite difficult. Is an identity the thoughts, feelings, or tendencies of a person? Are more tangible assets like a Social Security card, birth certificate, or passport a person’s identity? Can nonhuman entities like businesses or organizations possess an identity? The true definition of an identity may never be known; however, it is certain that several pieces of identifying data lay scattered across multiple databases. Often a person may not have control or even access to these third-party databases that hold their information. Moreover, what information, for how long, and in what way the data is being used may be unclear. Blockchain provides a solution to the identity problem by providing a visible, secure single source of truth. On a blockchain platform, a person would no longer have to trust the goodwill of third parties to secure their data or be uncertain about how the data is being used. Instead, a user could secure their own data and only permission those deemed necessary. The signal immutable ledger would serve to replace current tangible identities as a means to verify yourself in a digital age.
ContributorsRuggaard, Kyle Russell (Author) / Taylor, Todd (Thesis director) / Collins, Gregory (Committee member) / Thunderbird School of Global Management (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132520-Thumbnail Image.png
Description
Sustainable supply chain management has become increasingly more important for companies over the last decade. The need to create socially and environmentally sustainable supply chains that are also efficient and profitable is no longer something companies should do, but rather something they must do to stay competitive and successful in

Sustainable supply chain management has become increasingly more important for companies over the last decade. The need to create socially and environmentally sustainable supply chains that are also efficient and profitable is no longer something companies should do, but rather something they must do to stay competitive and successful in the long run. Through the examination of scholarly supply chain literature, case studies, and industry reports with an emphasis on digital technology, supply chain, and sustainability, a conceptual model was created to begin the research in the area of cost savings through the use of digital technologies to enable companies to be more sustainable. This paper works to define the terms sustainability, sustainable supply chain management, and intelligent supply chain designs. It focuses on the positive social and environmental impact of the implementation of leading-edge digital technologies in supply management processes by creating transparency, efficiency, and reliability throughout the supply chain. Through an applied analysis of Mattel, Rana Plaza, Nike, and Coca-Cola and a cost-benefit analysis, it is concluded that companies that implement blockchain technology into their supply management process designs may create more sustainable supply chains while increasing savings and increasing profits. Blockchain may provide the reliability and transparency needed to better manage the supply management process which will evoke better business decisions. Intelligent supply chain designs improve the environmental and social sustainability of a company while maintaining a competitive edge.

Keywords. Supply Chain Management, Social Responsibility, Sustainability, Economics, Supply Management, Blockchain, Intelligent Technology
Paper Type. Conceptual Paper
ContributorsVon Mizener, Noel Maria Yvonne Svetlana (Author) / Carter, Craig (Thesis director) / Forst, Bradley (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165223-Thumbnail Image.png
Description

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the engagement in in-depth interviews with professionals that work in the growing, distribution, and processing of leafy greens. Food safety in the leafy green industry is growing in importance in the wake of costly outbreaks that resulted and recalls and lasting market damage. The Dendritic Identifier provides a unique identification tag that is unclonable, scannable, and compatible with blockchain systems. It is a digital trigger that can be implemented throughout the commercial leafy green supply chain to increase visibility from farm to fork for the consumer and a traceability system for government agencies to trace outbreaks. Efforts like the Food Safety Modernization Act, the Leafy Green Marketing Agreement, and other certifications aim at establishing science-based standards regarding soil testing, water, animal feces, imports, and more. The leafy green supply chains are fragmented in terms of tagging methods and data management services used. There are obstacles in implementing Dendritic Identifiers in that all parties must have systems capable of joining blockchain networks. While there is still a lot to take into consideration for implementation, solutions like the IBM Food Trust pose options for a more fluid transfer of information. Dendritic Identifiers beat out competing tagging technologies in that they work with cellphones, are low cost, and are blockchain compatible. Growers and processors are excited by the opportunity to showcase their extensive food safety measures. The next step in understanding the use environment is to focus on the retail distribution and the retailer specifically.

ContributorsMin, Eleanor (Author) / Manfredo, Mark (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2022-05
165224-Thumbnail Image.png
Description

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the engagement in in-depth interviews with professionals that work in the growing, distribution, and processing of leafy greens. Food safety in the leafy green industry is growing in importance in the wake of costly outbreaks that resulted and recalls and lasting market damage. The Dendritic Identifier provides a unique identification tag that is unclonable, scannable, and compatible with blockchain systems. It is a digital trigger that can be implemented throughout the commercial leafy green supply chain to increase visibility from farm to fork for the consumer and a traceability system for government agencies to trace outbreaks. Efforts like the Food Safety Modernization Act, the Leafy Green Marketing Agreement, and other certifications aim at establishing science-based standards regarding soil testing, water, animal feces, imports, and more. The leafy green supply chains are fragmented in terms of tagging methods and data management services used. There are obstacles in implementing Dendritic Identifiers in that all parties must have systems capable of joining blockchain networks. While there is still a lot to take into consideration for implementation, solutions like the IBM Food Trust pose options for a more fluid transfer of information. Dendritic Identifiers beat out competing tagging technologies in that they work with cellphones, are low cost, and are blockchain compatible. Growers and processors are excited by the opportunity to showcase their extensive food safety measures. The next step in understanding the use environment is to focus on the retail distribution and the retailer specifically.

ContributorsMin, Eleanor (Author) / Manfredo, Mark (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2022-05