Matching Items (5)
Filtering by

Clear all filters

156945-Thumbnail Image.png
Description
Blockchain scalability is one of the issues that concerns its current adopters. The current popular blockchains have initially been designed with imperfections that in- troduce fundamental bottlenecks which limit their ability to have a higher throughput and a lower latency.

One of the major bottlenecks for existing blockchain technologies is fast

Blockchain scalability is one of the issues that concerns its current adopters. The current popular blockchains have initially been designed with imperfections that in- troduce fundamental bottlenecks which limit their ability to have a higher throughput and a lower latency.

One of the major bottlenecks for existing blockchain technologies is fast block propagation. A faster block propagation enables a miner to reach a majority of the network within a time constraint and therefore leading to a lower orphan rate and better profitability. In order to attain a throughput that could compete with the current state of the art transaction processing, while also keeping the block intervals same as today, a 24.3 Gigabyte block will be required every 10 minutes with an average transaction size of 500 bytes, which translates to 48600000 transactions every 10 minutes or about 81000 transactions per second.

In order to synchronize such large blocks faster across the network while maintain- ing consensus by keeping the orphan rate below 50%, the thesis proposes to aggregate partial block data from multiple nodes using digital fountain codes. The advantages of using a fountain code is that all connected peers can send part of data in an encoded form. When the receiving peer has enough data, it then decodes the information to reconstruct the block. Along with them sending only part information, the data can be relayed over UDP, instead of TCP, improving upon the speed of propagation in the current blockchains. Fountain codes applied in this research are Raptor codes, which allow construction of infinite decoding symbols. The research, when applied to blockchains, increases success rate of block delivery on decode failures.
ContributorsChawla, Nakul (Author) / Boscovic, Dragan (Thesis advisor) / Candan, Kasim S (Thesis advisor) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2018
137772-Thumbnail Image.png
Description
As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much

As robots become more prevalent, the need is growing for efficient yet stable control systems for applications with humans in the loop. As such, it is a challenge for scientists and engineers to develop robust and agile systems that are capable of detecting instability in teleoperated systems. Despite how much research has been done to characterize the spatiotemporal parameters of human arm motions for reaching and gasping, not much has been done to characterize the behavior of human arm motion in response to control errors in a system. The scope of this investigation is to investigate human corrective actions in response to error in an anthropomorphic teleoperated robot limb. Characterizing human corrective actions contributes to the development of control strategies that are capable of mitigating potential instabilities inherent in human-machine control interfaces. Characterization of human corrective actions requires the simulation of a teleoperated anthropomorphic armature and the comparison of a human subject's arm kinematics, in response to error, against the human arm kinematics without error. This was achieved using OpenGL software to simulate a teleoperated robot arm and an NDI motion tracking system to acquire the subject's arm position and orientation. Error was intermittently and programmatically introduced to the virtual robot's joints as the subject attempted to reach for several targets located around the arm. The comparison of error free human arm kinematics to error prone human arm kinematics revealed an addition of a bell shaped velocity peak into the human subject's tangential velocity profile. The size, extent, and location of the additional velocity peak depended on target location and join angle error. Some joint angle and target location combinations do not produce an additional peak but simply maintain the end effector velocity at a low value until the target is reached. Additional joint angle error parameters and degrees of freedom are needed to continue this investigation.
ContributorsBevilacqua, Vincent Frank (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
157869-Thumbnail Image.png
Description
Blockchain technology enables peer-to-peer transactions through the elimination of the need for a centralized entity governing consensus. Rather than having a centralized database, the data is distributed across multiple computers which enables crash fault tolerance as well as makes the system difficult to tamper with due to a distributed consensus

Blockchain technology enables peer-to-peer transactions through the elimination of the need for a centralized entity governing consensus. Rather than having a centralized database, the data is distributed across multiple computers which enables crash fault tolerance as well as makes the system difficult to tamper with due to a distributed consensus algorithm.

In this research, the potential of blockchain technology to manage energy transactions is examined. The energy production landscape is being reshaped by distributed energy resources (DERs): photo-voltaic panels, electric vehicles, smart appliances, and battery storage. Distributed energy sources such as microgrids, household solar installations, community solar installations, and plug-in hybrid vehicles enable energy consumers to act as providers of energy themselves, hence acting as 'prosumers' of energy.

Blockchain Technology facilitates managing the transactions between involved prosumers using 'Smart Contracts' by tokenizing energy into assets. Better utilization of grid assets lowers costs and also presents the opportunity to buy energy at a reasonable price while staying connected with the utility company. This technology acts as a backbone for 2 models applicable to transactional energy marketplace viz. 'Real-Time Energy Marketplace' and 'Energy Futures'. In the first model, the prosumers are given a choice to bid for a price for energy within a stipulated period of time, while the Utility Company acts as an operating entity. In the second model, the marketplace is more liberal, where the utility company is not involved as an operator. The Utility company facilitates infrastructure and manages accounts for all users, but does not endorse or govern transactions related to energy bidding. These smart contracts are not time bounded and can be suspended by the utility during periods of network instability.
ContributorsSadaye, Raj Anil (Author) / Candan, Kasim S (Thesis advisor) / Boscovic, Dragan (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2019
131863-Thumbnail Image.png
Description
Quantum computers provide a promising future, where computationally difficult
problems can be executed exponentially faster than the current classical computers we have in use today. While there is tremendous research and development in the creation of quantum computers, there is a fundamental challenge that exists in the quantum world. Due to

Quantum computers provide a promising future, where computationally difficult
problems can be executed exponentially faster than the current classical computers we have in use today. While there is tremendous research and development in the creation of quantum computers, there is a fundamental challenge that exists in the quantum world. Due to the fragility of the quantum world, error correction methods have originated since 1995 to tackle the giant problem. Since the birth of the idea that these powerful computers can crunch and process numbers beyond the limit of the current computers, there exist several mathematical error correcting codes that could potentially give the required stability in the fragile and fault tolerant quantum world. While there has been a multitude of possible solutions, there is no one single error correcting code that is the key to solving the problem. Almost every solution presented has shared with it a limiting factor or an issue that prevents it from becoming the breakthrough that is desperately needed.

This paper gives an introductory knowledge of what is the quantum world and why there is a need for error correcting topologies. Finally, it introduces one recent topology that could be added to the list of possible solutions to this central problem. Rather than focusing on the mathematical frameworks, the paper introduces the main concepts so that most readers even outside the major field of computer science can understand what the main problem is and how this topology attempts to solve it.
ContributorsAhmed, Umer (Author) / Colbourn, Charles (Thesis director) / Zhao, Ming (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Proxy digital signatures are a subset of proxy cryptography that enable a peer, as a proxy delegator, to delegate signing privileges to another trusted peer, who becomes a proxy signer. The proxy signer then signs authorized transactions routed to it from the proxy delegator, to then send to the intended

Proxy digital signatures are a subset of proxy cryptography that enable a peer, as a proxy delegator, to delegate signing privileges to another trusted peer, who becomes a proxy signer. The proxy signer then signs authorized transactions routed to it from the proxy delegator, to then send to the intended third party on their behalf. This has great applications for computer networks where certain devices lack sufficient computational power to secure themselves and may rely on trusted and computationally more powerful peers, particularly within edge and fog networks. Although there are multiple proxy digital signature schemas that are circulated within cryptography-centric research papers, a practical software implementation has yet to be created. In this paper we describe Mengde Signatures: the first practical software implementation of proxy digital signatures. We expound upon the current architecture and process for how proxy signatures are implemented and function in a software engineering context. Although applicable to many different types of networks, we showcase the application of Mengde Signatures on an open source Proof-Of-Work Blockchain.
ContributorsMendoza, Francis (Author) / Boscovic, Dragan (Thesis director) / Zhao, Ming (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12