Matching Items (6)
Filtering by

Clear all filters

151347-Thumbnail Image.png
Description
Pharmaceutical and Personal Care Products (PPCPs) are a large, diverse group of emerging contaminants comprised of pharmaceuticals, plasticizers, detergents, and insecticides. Studies have shown that PPCPs are entering aquatic environments, wastewaters, and water supplies. The occurrence of these PPCPs has generated concern resulting in proposed federal legislation that could require

Pharmaceutical and Personal Care Products (PPCPs) are a large, diverse group of emerging contaminants comprised of pharmaceuticals, plasticizers, detergents, and insecticides. Studies have shown that PPCPs are entering aquatic environments, wastewaters, and water supplies. The occurrence of these PPCPs has generated concern resulting in proposed federal legislation that could require control, monitoring, and treatment of Pharmaceutical and Personal Care Products by Publicly Owned Treatment Works (POTWs). This study evaluated the potential financial impact this proposed legislation could have on U.S. POTWs using City of Mesa, Arizona as a model POTW. The current laws concerning PPCPs as well as the proposed legislation were described. The proposed federal legislation would create investigational studies about PPCPs. The studies could lead to regulations concerning the control, monitoring, and treatment of PPCPs by POTWs. The potential financial costs of the following strategies were assessed: multiple barriers concept for PPCP control or prevention programs by POTWs, PPCP monitoring of wastewater, and upgrading POTW treatment technology for PPCP removal. Study results found no new wastewater treatment technologies were economically suitable for POTWs, however, community education and programs such as Household Take-back programs could be financially viable.
ContributorsSteffen-Deaton, Mary (Author) / Olson, Larry (Thesis advisor) / Brown, Albert F. (Committee member) / Hristovski, Kiril D. (Committee member) / Arizona State University (Publisher)
Created2012
153234-Thumbnail Image.png
Description
Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due

Granular activated carbon (GAC) filters are final polishing step in the drinking water treatment systems for removal of dissolved organic carbon fractions. Generally filters are colonized by bacterial communities and their activity reduces biodegradable solutes allowing partial regeneration of GAC's adsorptive capacity. When the bacteria pass into the filtrate due to increased growth, microbiological quality of drinking water is compromised and regrowth in the distribution system occurs. Bacteria attached to carbon particles as biofilms or in conjugation with other bacteria were observed to be highly resistant to post filtration microbial mitigation techniques. Some of these bacteria were identified as pathogenic.

This study focuses on one such pathogen Legionella pneumophila which is resistant to environmental stressors and treatment conditions. It is also responsible for Legionnaires' disease outbreak through drinking water thus attracting attention of regulatory agencies. The work assessed the attachment and colonization of Legionella and heterotrophic bacteria in lab scale GAC media column filters. Quantification of Legionella and HPC in the influent, effluent, column's biofilms and on the GAC particles was performed over time using fluorescent microscopy and culture based techniques.

The results indicated gradual increase in the colonization of the GAC particles with HPC bacteria. Initially high number of Legionella cells were detected in the column effluent and were not detected on GAC suggesting low attachment of the cells to the particles potentially due to lack of any previous biofilms. With the initial colonization of the filter media by other bacteria the number of Legionella cells on the GAC particles and biofilms also increased. Presence of Legionella was confirmed in all the samples collected from the columns spiked with Legionella. Significant increase in the Legionella was observed in column's inner surface biofilm (0.25 logs up to 0.52 logs) and on GAC particles (0.42 logs up to 0.63 logs) after 2 months. Legionella and HPC attached to column's biofilm were higher than that on GAC particles indicating the strong association with biofilms. The bacterial concentration slowly increased in the effluent. This may be due to column's wall effect decreasing filter efficiency, possible exhaustion of GAC capacity over time and potential bacterial growth.
ContributorsSharma, Harsha (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
151115-Thumbnail Image.png
Description
The purpose of drinking water regulations is to keep our drinking water safe from contaminants. This research reviewed federal regulation including the Contaminant Candidate List (CCL) regulatory process, the public health effects of six nitrosamines in drinking water, analyzes of occurrence data from Unregulated Contaminant Monitoring Rule (UCMR 2) and

The purpose of drinking water regulations is to keep our drinking water safe from contaminants. This research reviewed federal regulation including the Contaminant Candidate List (CCL) regulatory process, the public health effects of six nitrosamines in drinking water, analyzes of occurrence data from Unregulated Contaminant Monitoring Rule (UCMR 2) and suggests how nitrosamines can be regulated. Currently only total trihalomethanes (THM) and haloacetic acids (HA) are regulated at the federal level. However, California has notification action levels and Massachusetts has guidelines of 10 ng/L for nitrosamine concentration. Nitrosamine data collected under the UCMR 2 were analyzed to assess the occurrence and the effect of disinfectant type and source water type. The data showed that N-nitrosodimethylamine (NDMA) was detected in drinking water at concentrations higher than the minimum reporting level (MRL) of 2 ng/L. Four nitrosamines including N-nitroso-diethylamine (NDEA), N-nitroso-di-n-butylamine (NDBA), N-nitroso-methylethylamine (NMEA) and N-nitroso-pyrrolidine (NPYR) and very low detections. N-nitroso-di-n-propylamine (NDPA) was not detected in the sample analyses. NDMA was primarily detected in public water systems using chloramines other than chlorine.
ContributorsBrown, Alicia (Author) / Olson, Larry (Thesis advisor) / Peterson, Danny (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2012
154132-Thumbnail Image.png
Description
The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as

The purpose of this study was to determine the applicability of fluorescent microspheres as a surrogate to measure the removal of Cryptosporidium oocysts through the coagulation, flocculation, sedimentation, and filtration steps of conventional water treatment. In order to maintain accuracy and applicability, a local water treatment facility was chosen as the system to model. The city of Chandler Arizona utilizes conventional treatment methodologies to remove pathogens from municipal drinking water and thus the water, coagulant, polymer, and doses concentrations were sourced directly from the plant. Jar testing was performed on four combinations of coagulant, polymer, and fluorescent microsphere to determine if the log removal was similar to that of Cryptosporidium oocysts.

Complications with the material properties of the microspheres arose during testing that ultimately yielded unfavorable but conclusive results. Log removal of microspheres did not increase with added coagulant in the predicted manner, though the beads were seen aggregating, the low density of the particles made the sedimentation step inefficient. This result can be explained by the low density of the microspheres as well as the potential presence of residual coagulant present in the system. Given the unfavorable properties of the beads, they do not appear to be a suitable candidate for the surrogacy of Cryptosporidium oocysts in conventional drinking water treatment. The beads in their current state are not an adequate surrogate; however, future testing has been outlined to modify the experiment in such a way that the microspheres should behave like oocysts in terms of physical transportation.
ContributorsLinks, Alexander Glenn (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2015
156495-Thumbnail Image.png
Description
Quagga mussels are an aquatic invasive species capable of causing economic and ecological damage. Despite the quagga mussels’ ability to rapidly spread, two watersheds, the Salt River system and the Verde River system of Arizona, both had no quagga mussel detections for 8 years. The main factor thought to deter

Quagga mussels are an aquatic invasive species capable of causing economic and ecological damage. Despite the quagga mussels’ ability to rapidly spread, two watersheds, the Salt River system and the Verde River system of Arizona, both had no quagga mussel detections for 8 years. The main factor thought to deter quagga mussels was the stratification of the two watersheds during the summer, resulting in high temperatures in the epilimnion and low dissolved oxygen in the hypolimnion. In 2015, Canyon Lake, a reservoir of the Salt River watershed, tested positive for quagga mussel veligers. In this study, I used Landsat 7 and Landsat 8 satellite data to determine if changes in the surface temperature have caused a change to the reservoir allowing quagga mussel contamination. I used a location in the center of the lake with a root mean squared error (RMSE) of 0.80 and a correlation coefficient (R^2) of 0.82, but I did not detect any significant variations in surface temperatures from recent years. I also measured 21 locations on Canyon Lake to determine if the locations in Canyon Lake were able to harbor quagga mussels. I found that summer stratification caused hypolimnion dissolved oxygen levels to drop well below the quagga mussel threshold of 2mg/L. Surface temperatures, however were not high enough throughout the lake to prevent quagga mussels from inhabiting the epilimnion. It is likely that a lack of substrate in the epilimnion have forced any quagga mussel inhabitants in Canyon Lake to specific locations that were not necessarily near the point of quagga veliger detection sampling. The research suggests that while Canyon Lake may have been difficult for quagga mussels to infest, once they become established in the proper locations, where they can survive through the summer, quagga mussels are likely to become more prevalent.
ContributorsLau, Theresa (Author) / Fox, Peter (Thesis advisor) / Neuer, Susanne (Committee member) / Abbaszadegan, Morteza (Committee member) / Arizona State University (Publisher)
Created2018
157581-Thumbnail Image.png
Description
Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.
ContributorsPandit, Gandhar Abhay (Author) / Cadillo – Quiroz, Hinsby (Thesis advisor) / Olson, Larry (Thesis advisor) / Boyer, Treavor (Committee member) / Arizona State University (Publisher)
Created2019