Matching Items (8)
Filtering by

Clear all filters

136521-Thumbnail Image.png
Description
Derived from the idea that the utilization of sustainable practices could improve small business practice, this honors thesis offers a full business assessment and recommendations for improvements of a local, family-owned coffee shop, Gold Bar. A thorough analysis of the shop's current business practices and research on unnecessary expenses and

Derived from the idea that the utilization of sustainable practices could improve small business practice, this honors thesis offers a full business assessment and recommendations for improvements of a local, family-owned coffee shop, Gold Bar. A thorough analysis of the shop's current business practices and research on unnecessary expenses and waste guides this assessment.
ContributorsSorden, Clarissa (Co-author) / Boden, Alexandra (Co-author) / Darnall, Nicole (Thesis director) / Dooley, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
133939-Thumbnail Image.png
Description
Background While extensive research has been conducted among college students consuming alcohol with energy drinks, there is limited research exploring how extracurricular activities could have an impact on energy drink consumption and sleep. Understanding the association between student involvement and the impact it could have on sleep and energy drink

Background While extensive research has been conducted among college students consuming alcohol with energy drinks, there is limited research exploring how extracurricular activities could have an impact on energy drink consumption and sleep. Understanding the association between student involvement and the impact it could have on sleep and energy drink consumption among college freshmen is essential in promoting healthy behaviors while in college. Objectives The purpose of this study was to understand the relationship between student involvement, average hours of sleep, and predicted prevalence of energy drink and coffee consumption amongst college freshmen living in residence halls at a large, public university in the Southwest. Student involvement and fewer hours of sleep hypothesized to observe higher energy drink consumption. Methods This study was a secondary data analysis of the second wave of the longitudinal SPARC (Social impact of Physical Activity and nutRition in College) study assessing college freshmen (n=599; 70.6% female; 50.9% non-white) living on campus. Students were enrolled in this study during the 2015\u20142016 school year. Mutually adjusted generalized estimating equation (GEE) binomial models examined the relationship between involvement (academic clubs, sport clubs, honors, taking 16 or more credit hours, and having a job) and sleep with energy drink and coffee consumption, controlling for gender, race/ethnicity, Pell grant status, ever having tried alcohol, and clustering of students in residence halls. Results On average, students were enrolled in 15 credits, slept an average 8 hours per night, those who had a job worked 14 hours for pay per week, 35% reported consuming energy drinks in the past week, and about 29% of students reported coffee consumption. Males showed a higher predicted prevalence of energy drink consumption compared to females (p<0.001), where females showed a higher predicted prevalence of coffee consumption compared to males (<0.001); energy drink consumption was less prevalent amongst Hispanic students compared to white students (p=0.018), but more prevalent amongst black students compared to white students (p=0.002); no associations between race were found in predicted prevalence of coffee consumption. Average hours of sleep per night was inversely associated with energy drink consumption predicted prevalence (p<0.001). There was a lower predicted prevalence of energy drink and coffee consumption in honors student status (p<0.001) compared to non-honors students. Students taking 16 or more class credit hours showed a higher predicted prevalence in both energy drink (p=0.050) and coffee consumption (p=0.023) compared to students taking less than 16 class credit hours. Students involved in physically active clubs showed a greater predicted prevalence of coffee consumption (p<0.001) compared to students not in physically active clubs. There was no difference in the predicted prevalence in energy drink consumption amongst students involved in physically active clubs (p=0.710), non-physically active clubs (p=0.493), and having a job (p=0.146). Coffee consumption predicted prevalence showed no significant prevalence amongst students of different race and ethnicity [Black (p=0.507), Hispanic (p=103), Other (p=116)] as well as students involved in non-physically active (p=0.839) clubs and who had a paid job (p=0.088). Conclusion Associations observed between average hours of sleep, the different types of involvement of student activities, and energy drink and coffee consumption, were interesting in that a few findings were found to be contrary to the hypotheses. Future research should delve deeper into student involvement within honors programs to understand the contextual factors of why these students showed a significant inverse association in energy drink consumption. Contrary to hypothesis, sleep and energy drink consumption prevalence were indirectly related leading future research to examine and understand why students are consuming energy drinks since on average participants were meeting recommended sleep guidelines. Nutrition interventions are needed for the groups at consuming energy drinks and alcohol in combination due to the study finding increased predicted prevalence amongst these groups as well as the increased risky health behavior associated with the combination found in the literature. Support or Funding Information This study was supported by the NIH Common Fund from the Office of the Director and the Office of Behavioral and Social Sciences Research, grant number 1DP5OD017910-01 (PI: M. Bruening). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
ContributorsBender, Rebecca Leigh (Author) / Bruening, Meg (Thesis director) / McCoy, Maureen (Committee member) / Brennhofer, Stephanie (Committee member) / School of Sustainability (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
134712-Thumbnail Image.png
Description
Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to

Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to the soil to increase plant productivity. The objective of this experiment was to test how different concentrations of roasted coffee grounds would affect the overall plant productivity when introduced in the soil of various plant types and environmental atmospheres. Three treatments were selected (100% potting mix, 50% potting mix/50% coffee grounds, and 25% potting mix/75% coffee grounds) and applied to 3 acid-tolerating plants (radish, basil, and parsley). Each of these treatments were grown in 2 different environments, where one was planted in a Tempe, AZ backyard while the other group was planted in a lab environment, locating at Arizona State University's Tempe Campus. Each plant with its respective treatments (plant type, coffee ground treatment, and environment) had 10 identical plants for statistical accuracy, resulting in a total of 180 plants grown, observed, and analyzed for this 3-month long experiment. The plant development, plant height, length of roots, quantity of leaves, and environmental observations were recorded and used to define plant productivity in this investigation. The experiment demonstrated low survival rates in all groups including the control group, suggesting a flaw in the experimental design. Nonetheless, the experiment showed that among the surviving plants, the 75% treatment had the largest negative impact on plant productivity. The measured root lengths and leaf quantity had various results across each plant group, leaving the hypothesis unverified. Overall, the experiment was effective in demonstrating negative impacts of great concentrations of coffee grounds when introduced to various plants, but further investigation with an adjusted experimental design will need to be completed to reach a reliable conclusion.
ContributorsVan Winkle, Delaney Dare (Author) / Bang, Christofer (Thesis director) / Fox, Peter (Committee member) / Earl, Stevan (Committee member) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134518-Thumbnail Image.png
Description
This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and

This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and bore fluid to the spinneret. Based on apparatus runs performed with Polysulfone (PSF) dopes dissolved in N,N-Dimethylacetamide and supporting rheological analysis, the entanglement concentration, ce, was identified as a minimum processing threshold for creating HFMs. Similarly, significant increases in the ultimate tensile strength, fracture strain, and Young's modulus for extruded HFMs were observed as polymer dope concentration was increased at levels near ce. Beyond this initial increase, subsequent tests at higher PSF concentrations yielded diminishing changes in mechanical properties, suggesting an asymptotic approach to a point where the trend would cease. Without further research, it is theorized that this point falls on a transition from the semidiute entangled to concentrated concentration regimes. SEM imaging of samples revealed the formation of grooved structures on the inner surface of samples, which was determined to be a result of the low flowrate and polymer dope concentrations used in processing the HFMs during apparatus runs. Based on continued operation of the preliminary apparatus design, many areas of improvement were noted. Namely, these consisted of controlling the collector speed, eliminating rubbing of nascent fibers against the edge of the coagulation bath by installing an elevated roller, and replacing tygon tubing for the polymer line with a luer lock adapter for direct syringe attachment to the spinneret.
ContributorsBridge, Alexander Thomas (Author) / Green, Matthew D. (Thesis director) / Lin, Jerry Y. S. (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
131788-Thumbnail Image.png
Description
Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power.

Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power. Guatemala and Peru, to a lesser extent, have well organized and powerful organizations that make up their industry. However, Ecuador has a significantly less organized organization. At their core, each country has a similar structure. There is one organization on the national level that watches out for the industry as a whole. Underneath that, there are smaller, often regional organizations made up of cooperatives pooling their resources for export. They function in similar ways as the national organizations, but have less reach. At the bottom, there are individual cooperatives and independent farmers. These cooperatives do not have much reach or connection to international markets.
ContributorsChabin, James Edward (Author) / Janssen, Marco (Thesis director) / Taylor, Keith (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131915-Thumbnail Image.png
Description
Coffee is one of the most widely consumed beverages in the world, with a staggering 1.4 billion cups of coffee poured a day (Coffee Consumption around the World). One-point six percent of total US GDP is made up by coffee operations and fuels 1.6 million jobs in the United States

Coffee is one of the most widely consumed beverages in the world, with a staggering 1.4 billion cups of coffee poured a day (Coffee Consumption around the World). One-point six percent of total US GDP is made up by coffee operations and fuels 1.6 million jobs in the United States (The Global Coffee Industry). However, with an increasingly complex political and economic world, along with the threat of climate change, the world’s coffee supply is at risk of total collapse. There are two primary varieties of coffee consumed in the world, Arabica and Robusta coffee. Most coffee producing countries run along the equator and are generally classified as developing economies. The global south is relied upon for coffee production. “Across Mexico and Central America, over 4 million people depend directly on coffee production for their livelihoods” (An Integrated Framework). Coffee production helps boost these economies and support families financially, with many workers having to support dependent individuals.
ContributorsWinter, Lauren Dorothy (Author) / Keane, Katy (Thesis director) / Printezis, Antonios (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05