Matching Items (12)
Filtering by

Clear all filters

136521-Thumbnail Image.png
Description
Derived from the idea that the utilization of sustainable practices could improve small business practice, this honors thesis offers a full business assessment and recommendations for improvements of a local, family-owned coffee shop, Gold Bar. A thorough analysis of the shop's current business practices and research on unnecessary expenses and

Derived from the idea that the utilization of sustainable practices could improve small business practice, this honors thesis offers a full business assessment and recommendations for improvements of a local, family-owned coffee shop, Gold Bar. A thorough analysis of the shop's current business practices and research on unnecessary expenses and waste guides this assessment.
ContributorsSorden, Clarissa (Co-author) / Boden, Alexandra (Co-author) / Darnall, Nicole (Thesis director) / Dooley, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
133939-Thumbnail Image.png
Description
Background While extensive research has been conducted among college students consuming alcohol with energy drinks, there is limited research exploring how extracurricular activities could have an impact on energy drink consumption and sleep. Understanding the association between student involvement and the impact it could have on sleep and energy drink

Background While extensive research has been conducted among college students consuming alcohol with energy drinks, there is limited research exploring how extracurricular activities could have an impact on energy drink consumption and sleep. Understanding the association between student involvement and the impact it could have on sleep and energy drink consumption among college freshmen is essential in promoting healthy behaviors while in college. Objectives The purpose of this study was to understand the relationship between student involvement, average hours of sleep, and predicted prevalence of energy drink and coffee consumption amongst college freshmen living in residence halls at a large, public university in the Southwest. Student involvement and fewer hours of sleep hypothesized to observe higher energy drink consumption. Methods This study was a secondary data analysis of the second wave of the longitudinal SPARC (Social impact of Physical Activity and nutRition in College) study assessing college freshmen (n=599; 70.6% female; 50.9% non-white) living on campus. Students were enrolled in this study during the 2015\u20142016 school year. Mutually adjusted generalized estimating equation (GEE) binomial models examined the relationship between involvement (academic clubs, sport clubs, honors, taking 16 or more credit hours, and having a job) and sleep with energy drink and coffee consumption, controlling for gender, race/ethnicity, Pell grant status, ever having tried alcohol, and clustering of students in residence halls. Results On average, students were enrolled in 15 credits, slept an average 8 hours per night, those who had a job worked 14 hours for pay per week, 35% reported consuming energy drinks in the past week, and about 29% of students reported coffee consumption. Males showed a higher predicted prevalence of energy drink consumption compared to females (p<0.001), where females showed a higher predicted prevalence of coffee consumption compared to males (<0.001); energy drink consumption was less prevalent amongst Hispanic students compared to white students (p=0.018), but more prevalent amongst black students compared to white students (p=0.002); no associations between race were found in predicted prevalence of coffee consumption. Average hours of sleep per night was inversely associated with energy drink consumption predicted prevalence (p<0.001). There was a lower predicted prevalence of energy drink and coffee consumption in honors student status (p<0.001) compared to non-honors students. Students taking 16 or more class credit hours showed a higher predicted prevalence in both energy drink (p=0.050) and coffee consumption (p=0.023) compared to students taking less than 16 class credit hours. Students involved in physically active clubs showed a greater predicted prevalence of coffee consumption (p<0.001) compared to students not in physically active clubs. There was no difference in the predicted prevalence in energy drink consumption amongst students involved in physically active clubs (p=0.710), non-physically active clubs (p=0.493), and having a job (p=0.146). Coffee consumption predicted prevalence showed no significant prevalence amongst students of different race and ethnicity [Black (p=0.507), Hispanic (p=103), Other (p=116)] as well as students involved in non-physically active (p=0.839) clubs and who had a paid job (p=0.088). Conclusion Associations observed between average hours of sleep, the different types of involvement of student activities, and energy drink and coffee consumption, were interesting in that a few findings were found to be contrary to the hypotheses. Future research should delve deeper into student involvement within honors programs to understand the contextual factors of why these students showed a significant inverse association in energy drink consumption. Contrary to hypothesis, sleep and energy drink consumption prevalence were indirectly related leading future research to examine and understand why students are consuming energy drinks since on average participants were meeting recommended sleep guidelines. Nutrition interventions are needed for the groups at consuming energy drinks and alcohol in combination due to the study finding increased predicted prevalence amongst these groups as well as the increased risky health behavior associated with the combination found in the literature. Support or Funding Information This study was supported by the NIH Common Fund from the Office of the Director and the Office of Behavioral and Social Sciences Research, grant number 1DP5OD017910-01 (PI: M. Bruening). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
ContributorsBender, Rebecca Leigh (Author) / Bruening, Meg (Thesis director) / McCoy, Maureen (Committee member) / Brennhofer, Stephanie (Committee member) / School of Sustainability (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133586-Thumbnail Image.png
Description
Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several

Locusts are a major crop pest in many parts of the world and different species are endemic to different countries. In Latin America, the South American Locust (Schistocerca cancellata) is the predominant species found mostly in Argentina, Chile, Bolivia, Paraguay, and southern Brazil with Argentina being the most affected. Several control and management practices, including biological control, have been implemented in these countries in the past to control the locusts and reduce their impact on crop and vegetation, however, effective long-term control and management practices will require a detail understanding of how the predominant locust species in this region responds to resource variation. Research has shown that there is strong evidence that locusts, and many other organisms, will actively balance dietary macronutrients (protein, carbohydrates, and lipids) to optimize growth, survival, and/or reproduction. A study by Cease et. al, 2017, on the dietary preferences of the Mongolian locust (Oedaleus asiaticus) showed that it prefers diets that are high in carbohydrates over diets that are high in protein, in this case locusts self-selected a 1:2 ratio of protein:carbohydrate. This and many other studies provide vital insight into the nutritional and feeding preferences of these locust species but the effects that this difference in protein: carbohydrate preferences has on growth, egg production, flight potential, and survival has yet to be fully explored, hence, this study investigates the effects that nitrogen fertilization of wheatgrass will have on the growth, egg production, survival, and flight muscle mass of the South American locust in a controlled, laboratory environment.
ContributorsManneh, Balanding (Author) / Cease, Arianne (Thesis director) / Overson, Rick (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134712-Thumbnail Image.png
Description
Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to

Over the last century, society has begun to acknowledge and observe how human actions are negatively impacting the environment. Sustainable living is becoming more adopted into daily lives, including a focus on waste management and recycling. Previous informal studies have proposed that coffee grounds can be recycled and added to the soil to increase plant productivity. The objective of this experiment was to test how different concentrations of roasted coffee grounds would affect the overall plant productivity when introduced in the soil of various plant types and environmental atmospheres. Three treatments were selected (100% potting mix, 50% potting mix/50% coffee grounds, and 25% potting mix/75% coffee grounds) and applied to 3 acid-tolerating plants (radish, basil, and parsley). Each of these treatments were grown in 2 different environments, where one was planted in a Tempe, AZ backyard while the other group was planted in a lab environment, locating at Arizona State University's Tempe Campus. Each plant with its respective treatments (plant type, coffee ground treatment, and environment) had 10 identical plants for statistical accuracy, resulting in a total of 180 plants grown, observed, and analyzed for this 3-month long experiment. The plant development, plant height, length of roots, quantity of leaves, and environmental observations were recorded and used to define plant productivity in this investigation. The experiment demonstrated low survival rates in all groups including the control group, suggesting a flaw in the experimental design. Nonetheless, the experiment showed that among the surviving plants, the 75% treatment had the largest negative impact on plant productivity. The measured root lengths and leaf quantity had various results across each plant group, leaving the hypothesis unverified. Overall, the experiment was effective in demonstrating negative impacts of great concentrations of coffee grounds when introduced to various plants, but further investigation with an adjusted experimental design will need to be completed to reach a reliable conclusion.
ContributorsVan Winkle, Delaney Dare (Author) / Bang, Christofer (Thesis director) / Fox, Peter (Committee member) / Earl, Stevan (Committee member) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133253-Thumbnail Image.png
Description
Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert

Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert dinitrogen (N2) gas. Oak Creek is similarly nitrogen limited, but NO3- concentration in reaches surrounded by agriculture can be double that of other reaches. We employed a denitrification enzyme assay (DEA) to compare potential denitrification rate between differing land uses in Oak Creek and measured whole system N2 flux using a membrane inlet mass spectrometer to compare differences in actual denitrification rates at Sycamore and Oak Creek. We anticipated that NO3- would be an important limiting factor for denitrifiers; consequentially, agricultural land use reaches within Oak Creek would have the highest potential denitrification rate. We expected in situ denitrification rate to be higher in Oak Creek than Sycamore Creek due to elevated NO3- concentration, higher discharge, and larger streambed surface area. DEA results are forthcoming, but analysis of potassium chloride (KCl) extraction data showed that there were no significant differences between sites in sediment extractable NO3- on either a dry mass or organic mass basis. Whole-reach denitrification rate was inconclusive in Oak Creek, and though a significant positive flux in N2 from upstream to downstream was measured in Sycamore Creek, the denitrification rate was not significantly different from 0 after accounting for reaeration, suggesting that denitrification does not account for a significant portion of the NO3- uptake in Sycamore Creek. Future work is needed to address the specific factors limiting denitrification in this system.
ContributorsCaulkins, Corey Robert (Author) / Grimm, Nancy (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137696-Thumbnail Image.png
Description
City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as

City managers and policy makers are increasing looking to environmental systems to provide beneficial services for urban systems. Constructed wetland systems (CWS), highly managed and designed wetland ecosystems, are being utilized to remove pollution, particularly excess nitrogen (N), from treated wastewater. Various wetland process remove N from effluent, such as denitrification, direct plant uptake, and soil accumulation. Emergent macrophytes provide direct uptake of N and improve conditions for microbially-mediated N processing. The role of different macrophytes species, however, is less understood and has primarily been examined in mesocosm and microcosm experiments and in mesic environments. I examined the effects of community composition on N removal and processing at the whole ecosystem scale in an aridland, constructed wetland (42 ha) through: 1) quantifying above- and belowground biomass and community composition from July 2011 \u2014 November 2012 using a non-destructive allometric technique, and; 2) quantifying macrophyte N content and direct macrophyte N uptake over the 2012 growing season. Average peak biomass in July 2011 & 2012 was 2,930 g dw/m2 and 2,340 g dw/m2, respectively. Typha spp. (Typha domingensis and Typha latifolia) comprised the majority (approximately 2/3) of live aboveground biomass throughout the sampling period. No statistically significant differences were observed in macrophyte N content among the six species present, with an overall average of 1.68% N in aboveground tissues and 1.29% N in belowground tissues. Per unit area of wetland, Typha spp. retained the most N (22 g/m2); total N retained by all species was 34 g/m2. System-wide direct plant N uptake was markedly lower than N input to the system and thus represented a small portion of system N processing. Soil accumulation of N also played a minor role, leaving denitrification as the likely process responsible for the majority of system N processing. Based on a literature review, macrophyte species composition likely influences denitrification through oxygen diffusion into soils and through the quality and quantity of carbon in leaf litter. While this study and the literature indicates Typha spp. may be the best species to promote wetland N processing, other considerations (e.g., bird habitat) and conditions (e.g., type of wastewater being treated) likely make mixed stands of macrophytes preferable in many applications. Additionally, this study demonstrated the importance of urban wetlands as scientific laboratories for scientists of all ages and as excellent stepping-off points for experiments of science-policy discourse.
ContributorsWeller, Nicholas Anton (Author) / Daniel L., Childers (Thesis director) / Grimm, Nancy (Committee member) / Turnbull, Laura (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Public Affairs (Contributor) / Graduate College (Contributor)
Created2013-05
135490-Thumbnail Image.png
Description
Duckponics is an unconventional form of aquaponics that has recently been implemented by a small community in Washington State as an experiment in sustainable methods of food production. The community created the Duckponics system to test the possibility of using the waste of ducks present on the farm to fertilize

Duckponics is an unconventional form of aquaponics that has recently been implemented by a small community in Washington State as an experiment in sustainable methods of food production. The community created the Duckponics system to test the possibility of using the waste of ducks present on the farm to fertilize crop plants. This research paper examines aspects of the nitrogen cycle within this system to determine the efficacy of nitrogen removal by plants and microbes. More specifically, the research examines (1) the microbial activity occurring in selected beds of the system, (2) the ability of hydroponic grow beds to retain inorganic nitrogen, and (3) how periodic flushing of the system affects nitrogen retention. Water data was collected in all system tanks using aquarium test strips, but water samples were collected for flow injection analysis in (1) one of the grow beds, (2) the duck pond, and (3) a control bed with no plants but filled with gravel and inoculated with the same bacteria from the grow bed. Samples were then analyzed for ammonia (NH4+-N) and combined nitrite and nitrate (NOx-N) concentrations. The results show that the treatment type (control, duck pond, or grow bed) was a significant (p<0.05) predictor of NH4+-N, NOx-N, and total inorganic nitrogen (TIN) in the porewater of the treatment beds. The grow bed was found to have 100% removal of TIN, whereas the control had 0% TIN removal (195% increase). Timing of the sample in relation to the flushing events was a moderately significant predictor of TIN, NH4+-N and NOx-N in the duck pond (p = 0.07 for TIN, p = 0.12 for NH4+-N, p = 0.11 for NOx-N), with an overall decrease in TIN after flood pulses. NH4+-N concentrations at the inlet and outlet were found to be significantly different in the grow bed (p=0.037), but not the control, and moderately significantly different (p<0.15) for NOx-N and TIN in the grow bed (p=0.072 for NOx-N, p=0.075 for TIN), but significant for the control (p=0.043). These findings show evidence of nitrification in the grow bed and control, plant presence significantly contributing to nitrogen removal in the grow bed, and some hydrologic flushing of NOx-N out of the duck pond during pump cycles.
ContributorsPanfil, Daniela Kristiina (Author) / Doucette, Sonya (Thesis director) / Palta, Monica (Committee member) / Moody, Jack (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131788-Thumbnail Image.png
Description
Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power.

Coffee is an important link between the United States and Latin America and an important part of Latin America’s culture and economy. This paper looks at the similarities and differences between coffee organizations in Colombia, Ecuador, Peru, and Guatemala. Colombia has the strongest coffee organizations with the most political power. Guatemala and Peru, to a lesser extent, have well organized and powerful organizations that make up their industry. However, Ecuador has a significantly less organized organization. At their core, each country has a similar structure. There is one organization on the national level that watches out for the industry as a whole. Underneath that, there are smaller, often regional organizations made up of cooperatives pooling their resources for export. They function in similar ways as the national organizations, but have less reach. At the bottom, there are individual cooperatives and independent farmers. These cooperatives do not have much reach or connection to international markets.
ContributorsChabin, James Edward (Author) / Janssen, Marco (Thesis director) / Taylor, Keith (Committee member) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131915-Thumbnail Image.png
Description
Coffee is one of the most widely consumed beverages in the world, with a staggering 1.4 billion cups of coffee poured a day (Coffee Consumption around the World). One-point six percent of total US GDP is made up by coffee operations and fuels 1.6 million jobs in the United States

Coffee is one of the most widely consumed beverages in the world, with a staggering 1.4 billion cups of coffee poured a day (Coffee Consumption around the World). One-point six percent of total US GDP is made up by coffee operations and fuels 1.6 million jobs in the United States (The Global Coffee Industry). However, with an increasingly complex political and economic world, along with the threat of climate change, the world’s coffee supply is at risk of total collapse. There are two primary varieties of coffee consumed in the world, Arabica and Robusta coffee. Most coffee producing countries run along the equator and are generally classified as developing economies. The global south is relied upon for coffee production. “Across Mexico and Central America, over 4 million people depend directly on coffee production for their livelihoods” (An Integrated Framework). Coffee production helps boost these economies and support families financially, with many workers having to support dependent individuals.
ContributorsWinter, Lauren Dorothy (Author) / Keane, Katy (Thesis director) / Printezis, Antonios (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05