Matching Items (8)
151293-Thumbnail Image.png
Description
Biofuel from microbial biomass is a viable alternative to current energy production practices that could mitigate greenhouse gas levels and reduce dependency on fossil fuels. Sustainable production of microbial biomass requires efficient utilization of nutrients like phosphorus (P). P is a limited resource which is vital for global food security.

Biofuel from microbial biomass is a viable alternative to current energy production practices that could mitigate greenhouse gas levels and reduce dependency on fossil fuels. Sustainable production of microbial biomass requires efficient utilization of nutrients like phosphorus (P). P is a limited resource which is vital for global food security. This paper seeks to understand the fate of P through biofuel production and proposes a proof-of-concept process to recover P from microbial biomass. The photosynthetic cyanobacterium Synechocystis sp. PCC 6803 is found to contain 1.4% P by dry weight. After the crude lipids are extracted for biofuel processing, 92% of the intercellular P is found within the residual biomass. Most intercellular P is associated with nucleic acids which remain within the cell after lipids are extracted. Phospholipids comprise a small percentage of cellular P. A wet chemical advanced oxidation process of adding 30% hydrogen peroxide followed by 10 min of microwave heating converts 92% of the total cellular P from organic-P and polyphosphate into orthophosphate. P was then isolated and concentrated from the complex digested matrix by use of resins. An anion exchange resin impregnated with iron nanoparticles demonstrates high affinity for P by sorbing 98% of the influent P through 20 bed volumes, but only was able to release 23% of it when regenerated. A strong base anion exchange resin sorbed 87% of the influent P through 20 bed volumes then released 50% of it upon regeneration. The overall P recovery process was able to recover 48% of the starting intercellular P into a pure and concentrated nutrient solution available for reuse. Further optimization of elution could improve P recovery, but this provides a proof-of-concept for converting residual biomass after lipid extraction to a beneficial P source.
ContributorsGifford, James McKay (Author) / Westerhoff, Paul (Thesis advisor) / Rittmann, Bruce (Committee member) / Vannela, Ravindhar (Committee member) / Arizona State University (Publisher)
Created2012
136816-Thumbnail Image.png
Description
Overexpression of AVP1 (Arabidopsis vacuolar pyrophosphatase), a type I H+ pyrophosphatase, results in greater biomass, possibly due to a function in sucrose transport within the phloem. Overexpression of the phloem lipid-associated family protein (PLAFP) was shown to increase the number of vascular bundles in Arabidopsis. Could these two phenotypes complement

Overexpression of AVP1 (Arabidopsis vacuolar pyrophosphatase), a type I H+ pyrophosphatase, results in greater biomass, possibly due to a function in sucrose transport within the phloem. Overexpression of the phloem lipid-associated family protein (PLAFP) was shown to increase the number of vascular bundles in Arabidopsis. Could these two phenotypes complement one another additively? In this work, double mutants overexpressing both AVP1 and PLAFP were characterized. These double mutants have enhanced biomass, greater leaf area, and a larger number of vascular bundles than the single mutant lines. Overexpression of PLAFP does not result in any increase in rhizosphere acidification capacity.
ContributorsWilson, Sean (Co-author) / Furstenau, Tara (Co-author) / Gaxiola, Roberto (Thesis director) / Mason, Hugh (Committee member) / Wojciechowski, Martin (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134586-Thumbnail Image.png
Description
The inability of a single strain of bacteria to simultaneously and completely consume multiple sugars, such as glucose and xylose, hinder industrial microbial processes for ethanol and lactate production. To overcome this limitation, I am engineering an E. coli co-culture system consisting of two ‘specialists'. One has the ability to

The inability of a single strain of bacteria to simultaneously and completely consume multiple sugars, such as glucose and xylose, hinder industrial microbial processes for ethanol and lactate production. To overcome this limitation, I am engineering an E. coli co-culture system consisting of two ‘specialists'. One has the ability to only consume xylose and the other only glucose. This allows for co-utilization of lignocellulose-derived sugars so both sugars are completely consumed, residence time is reduced and lactate and ethanol titers are maximized.
ContributorsAyla, Zeynep Ece (Author) / Nielsen, David (Thesis director) / Flores, Andrew (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
141315-Thumbnail Image.png
Description

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may

The majority of trust research has focused on the benefits trust can have for individual actors, institutions, and organizations. This “optimistic bias” is particularly evident in work focused on institutional trust, where concepts such as procedural justice, shared values, and moral responsibility have gained prominence. But trust in institutions may not be exclusively good. We reveal implications for the “dark side” of institutional trust by reviewing relevant theories and empirical research that can contribute to a more holistic understanding. We frame our discussion by suggesting there may be a “Goldilocks principle” of institutional trust, where trust that is too low (typically the focus) or too high (not usually considered by trust researchers) may be problematic. The chapter focuses on the issue of too-high trust and processes through which such too-high trust might emerge. Specifically, excessive trust might result from external, internal, and intersecting external-internal processes. External processes refer to the actions institutions take that affect public trust, while internal processes refer to intrapersonal factors affecting a trustor’s level of trust. We describe how the beneficial psychological and behavioral outcomes of trust can be mitigated or circumvented through these processes and highlight the implications of a “darkest” side of trust when they intersect. We draw upon research on organizations and legal, governmental, and political systems to demonstrate the dark side of trust in different contexts. The conclusion outlines directions for future research and encourages researchers to consider the ethical nuances of studying how to increase institutional trust.

ContributorsNeal, Tess M.S. (Author) / Shockley, Ellie (Author) / Schilke, Oliver (Author)
Created2016
154350-Thumbnail Image.png
Description
Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli

Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli BW25113 was explored with the use of synthetic trans-encoded small RNA (sRNA) to achieve greater efficiency. The naturally occurring sRNA MicC was used as a scaffold, and combined on a plasmid with a promoter for anhydrous tetracycline (aTc) and a T1/TE terminator. The coding sequence corresponding to the target binding site for fourteen potentially growth-essential gene targets as well as non-essential lacZ was placed in the seed region of the of the sRNA scaffold and transformed into BW25113, effectively generating a unique strain for each gene target. The BW25113 strain corresponding to each gene target was screened in M9 minimal media; decreased optical density and elongated cell morphology changes were observed and quantified in all induced sRNA cases where growth-essential genes were targeted. Six of the strains targeting different aspects of cell division that effectively suppressed growth and resulted in increased cell size were then screened for viability and metabolic activity in a scaled-up shaker flask experiment; all six strains were shown to be viable during stationary phase, and a metabolite analysis showed increased specific glucose consumption rates in induced strains, with unaffected specific glucose consumption rates in uninduced strains. The growth suppression, morphology and metabolic activity of the induced strains in BW25113 was compared to the bacteriostatic additives chloramphenicol, tetracycline, and streptomycin. At this same scale, the sRNA plasmid targeting the gene murA was transformed into BW25113 pINT-GA, a phenylalanine overproducer with the feedback resistant genes aroG and pheA overexpressed. Two induction times were explored during exponential phase, and while the optimal induction time was found to increase titer and yield amongst the BW25113 pINT-GA murA sRNA variant, overall this did not have as great a titer or yield as the BW25113 pINT-GA strain without the sRNA plasmid; this may be a result of the cell filamentation.
ContributorsHerschel, Daniel Jordan (Author) / Nielsen, David R (Thesis advisor) / Torres, César I (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
132107-Thumbnail Image.png
Description
Climate change has the potential to reduce the amount of land that is suitable for crop growth. Such changes may cause food shortages, which would most likely disproportionately affect the poorest regions of the world. While GMO crops showed potential to increase crop yield and agricultural efficiency, significant public pushback

Climate change has the potential to reduce the amount of land that is suitable for crop growth. Such changes may cause food shortages, which would most likely disproportionately affect the poorest regions of the world. While GMO crops showed potential to increase crop yield and agricultural efficiency, significant public pushback has led to a search for alternative methods to generate similar results. Compounds produced by bacteria, such as 2,3-butanediol, offer a potential way to change the phenotypes of plants without the deliberate genomic changes involved in the development of GMOs which are often the subject of great controversy. These compounds influence how plants grow and function. Through precise application, the compounds could be used to improve crop yield and stress tolerance. While these effects are not completely understood, they may be due to changes in transcription and translation of certain proteins, the microbiome surrounding the plants and its interactions with the compounds, or other unknown factors. The compound 2,3-butanediol appears to increase biomass, lead to larger root systems and more root hairs, and increase germination rates in a variety of plants. All these traits are favorable for producing higher yields and enduring stress conditions. The phenotypes induced by this compound are similar to plants engineered to over express a type I proton pyrophosphatase. Plants treated with 2,3-butanediol offer a potential option to achieve the benefits of GMO crops without the attached social stigma.
ContributorsOlson, Erik Jon (Co-author) / Olson, Erik (Co-author) / Gaxiola, Roberto (Thesis director) / Mason, Hugh (Committee member) / Riley, James (Committee member) / School of Life Sciences (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description
In northern Arizona, the removal of woody biomass from forested land has garnered a high level of interest as threats of catastrophic wildfires have increased in recent years. Although there has been a great deal of vocal support for forest restoration, efforts on the ground are often stalled by complex

In northern Arizona, the removal of woody biomass from forested land has garnered a high level of interest as threats of catastrophic wildfires have increased in recent years. Although there has been a great deal of vocal support for forest restoration, efforts on the ground are often stalled by complex federal contracting systems, a weak logging and sawmill industry, low-quality timber, and inabilities to guarantee long-term biomass supplies to processers. These barriers are exceedingly apparent in in the Flagstaff area, where the vast majority of forested land falls under the jurisdiction of the federal government and little infrastructure exists for wood product industries. In order to address these obstacles, forest stakeholders in Coconino County are actively searching for enterprises to utilize material that urgently needs to be removed from the surrounding forests. This project aimed to assist stakeholders in this endeavor by identifying and researching a number of practical and innovative woody biomass utilization enterprises that are suited to the existing regional infrastructure. While there are a variety of ways to process biomass, this project focuses on the following four end products because of their ability to use residual materials from harvest and sawmill operations, their low-tech nature, and the end product’s proximity to potential markets: biochar, compost, wood-plastic composites, and mushroom cultivation. Each of these products, and the processes used to create them, were analyzed and evaluated using a sustainable enterprise framework, and the final results were summarized in a portfolio for stakeholders in the region to review. Although this project offered just a glimpse of what is possible, the ultimate aim was to foster collaborative conversations regarding how forest restoration residues can be used in sustainable and innovative ways.
ContributorsPaulus, Caitlin (Contributor)
Created2019-05-15
Description

Domestic energy is an important component of our day to day lives and is something we cannot live without. Imagine how life would be without a means to cook our food, to warm our house, life would be unbearable. As we enjoy these comforts rarely do we stop to think

Domestic energy is an important component of our day to day lives and is something we cannot live without. Imagine how life would be without a means to cook our food, to warm our house, life would be unbearable. As we enjoy these comforts rarely do we stop to think what the opportunity cost is. For those using renewable sources, it is not a big issue, but for those who rely on wood fuel, they have to strike a delicate balance between need for fuel and the need to conserve the greatest support systems of their livelihoods, the forests. The main source of energy for households in many developing countries is biomass, mainly from forests and woodlands. The continued use of firewood and charcoal fuel puts a strain on forests, resulting in adverse effects on the environment such as prolonged droughts, loss of biodiversity, dwindling water resources, changing weather patterns among other sustainability challenges. An alternative to firewood to charcoal lies in biochar briquettes. This paper discusses the role of biochar briquettes in mitigating climate change and serves as a step by step guide on how biochar briquettes may be produced.

ContributorsNganga, Patrick M. (Author)
Created2018