Matching Items (3)
Filtering by

Clear all filters

133062-Thumbnail Image.png
Description
Through the months September-November of 2017 a study was conducted to determine if bees prefer the sunflower, Helianthus annuus, native to Arizona, or a cultivar Helianthus sunflower in an urban environment. The study was executed in a small, controlled urban environment on Arizona State University West campus. Seven identified bee

Through the months September-November of 2017 a study was conducted to determine if bees prefer the sunflower, Helianthus annuus, native to Arizona, or a cultivar Helianthus sunflower in an urban environment. The study was executed in a small, controlled urban environment on Arizona State University West campus. Seven identified bee species and forty-nine specimens were collected, of the forty-nine specimens, two bees were reported on the Helianthus cultivar supporting native floral host preferences of native species. Variables such as nectar, pollen, floral color, and floral height were not measured, however, when the floral host genus was maintained wild bees visited the native Helianthus host significantly more yielding a supportive two-tailed p-value of 2.97x10-5. Three trends were identified in correlation with the experiment: 1) Bees foraged on native Helianthus annuus over the Helianthus cultivar, 2) Generalist species were more abundant than specialists on the Helianthus annuus, 3) Honey bees (Apis mellifera) were the most abundant species present. While not considered a trend, low floral diversity and abundance may explain the low diversity of bee species observed on the Helianthus. Floral host and pollinator desynchronization may also have affected bee diversity and abundance. Analysis of bee abundance and diversity support that wild bees may prefer native floral hosts over cultivar floral hosts when the floral genus, temperature, and time was controlled for in an urban environment.
ContributorsDunham, Jocelen Michaela (Author) / Foltz-Sweat, Jennifer (Thesis director) / Sweat, Ken (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134344-Thumbnail Image.png
Description
Bee communities form the keystone of many ecosystems through their pollination services. They are dynamic and often subject to significant changes due to several different factors such as climate, urban development, and other anthropogenic disturbances. As a result, the world has been experiencing a decline in bee diversity and abundance,

Bee communities form the keystone of many ecosystems through their pollination services. They are dynamic and often subject to significant changes due to several different factors such as climate, urban development, and other anthropogenic disturbances. As a result, the world has been experiencing a decline in bee diversity and abundance, which can have detrimental effects in the ecosystems they inhabit. One of the largest factors that impacts bees in today's world is the rapid urbanization of our planet, and it impacts the bee community in mixed ways. Not very much is understood about the bee communities that exist in urban habitats, but as urbanization is inevitably going to continue, knowledge on bee communities will need to strengthen. This study aims to determine the levels of variance in bee communities, considering multiple variables that bee communities can differ in. The following three questions are posed: do bee communities that are spatially separated differ significantly? Do bee communities that are separated by seasons differ significantly? Do bee communities that are separated temporally (by year, interannually) differ significantly? The procedure to conduct this experiment consists of netting and trapping bees at two sites at various times using the same methods. The data is then statistically analyzed for differences in abundance, richness, diversity, and species composition. After performing the various statistical analyses, it has been discovered that bee communities that are spatially separated, seasonally separated, or interannually separated do not differ significantly when it comes to abundance and richness. Spatially separated bee communities and interannually separated bee communities show a moderate level of dissimilarity in their species composition, while seasonally separated bee communities show a greater level of dissimilarity in species composition. Finally, seasonally separated bee communities demonstrate the greatest disparity of bee diversity, while interannually separated bee communities show the least disparity of bee diversity. This study was conducted over the time span of two years, and while the levels of variance of an urban area between these variables were determined, further variance studies of greater length or larger areas should be conducted to increase the currently limited knowledge of bee communities in urban areas. Additional studies on precipitation amounts and their effects on bee communities should be conducted, and studies from other regions should be taken into consideration while attempting to understand what is likely the most environmentally significant group of insects.
ContributorsPhan, James Thien (Author) / Sweat, Ken (Thesis director) / Foltz-Sweat, Jennifer (Committee member) / School of Music (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
171770-Thumbnail Image.png
Description
ABSTRACT Genomes are biologically complex entities where an alteration in structure can yield no effect, or have a devastating effect on many pathways. Most of the focus has been on translocations that generate fusion proteins. However, this is only one of many outcomes. Recent work suggests alterations in topologically associated

ABSTRACT Genomes are biologically complex entities where an alteration in structure can yield no effect, or have a devastating effect on many pathways. Most of the focus has been on translocations that generate fusion proteins. However, this is only one of many outcomes. Recent work suggests alterations in topologically associated domains (TADs) can lead to changes in gene expression. It is hypothesized that alterations in genome structure can disrupt TADs leading to an alteration in the variability of gene expression within the contained gene expression neighborhood defined by the TAD. To test this hypothesis, variability of gene expression for genes contained within TADs between 37 cancer cell lines from the NCI-60 cell line panel was compared with normal expression data for the corresponding tissues of origin. Those results were correlated with the data on structural events within the NCI-60 cell lines that would disrupt a TAD. It was observed that 2.4% of the TADs displayed altered variance in gene expression when comparing cancer to normal tissue. Using array CGH data from the cancer cell lines to map breakpoints within TADS, it was discovered that altered variance is always associated with a TAD disrupted by a breakpoint, but a breakpoint within a TAD does not always lead to altered variance. TADs with altered variance in gene expression were no different in size than those without altered variance. There is evidence of recurrent pan-cancer alteration in variance for eleven genes within two TADs on two chromosomes (Chromosome 10 & 19) for all 37 cell lines. The genes located within these TADs are enriched in pathways related to RNA processing. This study supports altered variance as a signal of a breakpoint with a functional consequence.
ContributorsDunham, Jocelen Michaela (Author) / Kanthaswamy, Sreethan (Thesis advisor) / Mancenido, Michelle (Thesis advisor) / Bussey, Kimberly J. (Committee member) / Arizona State University (Publisher)
Created2022