Matching Items (9)
Filtering by

Clear all filters

128952-Thumbnail Image.png
Description

Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing

Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing Arizona to supply most of the country's winter lettuce and vegetables. In addition to Phoenix and Tucson, cities including El Paso, Las Vegas, Los Angeles, and San Diego rely on Arizona for several types of agricultural products such as animal feed and livestock, meaning that disruptions to Arizona's agriculture also disrupt food supply chains to at least six major cities.

Arizona's predominately irrigated agriculture relies on water imported through an energy intensive process from water-stressed regions. Most irrigation in Arizona is electricity powered, so failures in energy or water systems can cascade to the food system, creating a food-energy-water (FEW) nexus of vulnerability. We construct a dynamic simulation model of the FEW nexus in Arizona to assess the potential impacts of increasing temperatures and disruptions to energy and water supplies on crop irrigation requirements, on-farm energy use, and yield.

We use this model to identify critical points of intersection between energy, water, and agricultural systems and quantify expected increases in resource use and yield loss. Our model is based on threshold temperatures of crops, USDA and US Geological Survey data, Arizona crop budgets, and region-specific literature. We predict that temperature increase above the baseline could decrease yields by up to 12.2% per 1 °C for major Arizona crops and require increased irrigation of about 2.6% per 1 °C. Response to drought varies widely based on crop and phenophase, so we estimate irrigation interruption effects through scenario analysis. We provide an overview of potential adaptation measures farmers can take, and barriers to implementation.

ContributorsBerardy, Andrew (Author) / Chester, Mikhail Vin (Author)
Created2017-02-28
Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
Description
Islands are some of the smallest contributors to global carbon emissions, yet are among the most vulnerable to the impacts of climate change (e.g. rising sea levels, extreme storms, and declining fish populations due to warming seas). At the same time, due to their smaller scale and local limitations on

Islands are some of the smallest contributors to global carbon emissions, yet are among the most vulnerable to the impacts of climate change (e.g. rising sea levels, extreme storms, and declining fish populations due to warming seas). At the same time, due to their smaller scale and local limitations on resources, island communities have been driving adaptation efforts for responding to the impacts of climate change based on their lived experiences and indigenous knowledge. Recognizing that local community members are in the best position to advance sustainability solutions in their respective island communities, our project sought to uncover best practices of islands that are collaboratively working with their communities to promote sustainable development and adapt to climate change, while leading the way in measuring progress on the SDGs. To this end, we interviewed island leaders from Hawaii, Guam, and Tasmania, who have already launched strategies for achieving these goals, and combined their experiences into a framework requested by other island leaders to encourage locally-driven, culturally-relevant green growth initiatives in partnership with our project partner, the Local2030 Islands Network (Local2030IN). Through designing the framework, we learned 17 possible actions islands can take when developing their own green growth initiative, key insights for implementing the SDGs on islands, and how to work alongside a project partner to create a final deliverable.
Created2021-04-28
Description
Members of the United States Climate Alliance, all of which have committed to the goals of the Paris Agreement, are actively pursuing ways to mitigate climate change. This project is intended to support the integration of agriculture into U.S. state and territory efforts by aiding in the creation of an

Members of the United States Climate Alliance, all of which have committed to the goals of the Paris Agreement, are actively pursuing ways to mitigate climate change. This project is intended to support the integration of agriculture into U.S. state and territory efforts by aiding in the creation of an agricultural policy toolkit for Alliance members in partnership with the American Farmland Trust and the Coalition on Agricultural Greenhouse Gases. My contribution was phase one of the toolkit, for which I created fourteen state profiles of existing efforts related to agriculture and climate change and used these for a comparative analysis. I also developed an outline of the toolkit based on conversations and a list of partner ideas I maintained and drafted an internal protocol to assist in development and implementation. Further, I analyzed the outline using a sustainability framework to identify additional efforts that could strengthen the toolkit’s sustainability. In April 2019 I presented my phase 1 efforts and the toolkit plans alongside my partners at a C-AGG conference. Overall, through this project, I generated forward momentum for integrating and supporting agriculture in climate change efforts
ContributorsHarmon, Anna (Author)
Created2019-05-15
Description

Domestic energy is an important component of our day to day lives and is something we cannot live without. Imagine how life would be without a means to cook our food, to warm our house, life would be unbearable. As we enjoy these comforts rarely do we stop to think

Domestic energy is an important component of our day to day lives and is something we cannot live without. Imagine how life would be without a means to cook our food, to warm our house, life would be unbearable. As we enjoy these comforts rarely do we stop to think what the opportunity cost is. For those using renewable sources, it is not a big issue, but for those who rely on wood fuel, they have to strike a delicate balance between need for fuel and the need to conserve the greatest support systems of their livelihoods, the forests. The main source of energy for households in many developing countries is biomass, mainly from forests and woodlands. The continued use of firewood and charcoal fuel puts a strain on forests, resulting in adverse effects on the environment such as prolonged droughts, loss of biodiversity, dwindling water resources, changing weather patterns among other sustainability challenges. An alternative to firewood to charcoal lies in biochar briquettes. This paper discusses the role of biochar briquettes in mitigating climate change and serves as a step by step guide on how biochar briquettes may be produced.

ContributorsNganga, Patrick M. (Author)
Created2018
Description
People everywhere should be doing everything they can to be more sustainable so that climate change can begin to be mitigated. We are already feeling the negative effects of climate change, and they are thoroughly documented. Despite this people are not changing to be more sustainable fast enough. Many either

People everywhere should be doing everything they can to be more sustainable so that climate change can begin to be mitigated. We are already feeling the negative effects of climate change, and they are thoroughly documented. Despite this people are not changing to be more sustainable fast enough. Many either reject the idea of climate change, do not know what they could do, or are unaware of how climate change affects them. Sustainability also impacts more than just climate change. Living more sustainably can have positive impacts economically as well as positive impacts on human health. In a world that is so connected and with such a wealth of information, we can no longer afford to have communities in the dark. Leaders need to rise on a community level to make a difference. Leadership is an aspect of an organization or a project that can elevate it to new heights. A leader is not everything, but the difference a good leader makes is universal. In this paper I will teach you about organizing a sustainability fair that educates and engages marginalized communities that typically are not included in the conversation on how to save our world.
ContributorsSalinas, Jorge (Author)
Created2018-11-10
165982-Thumbnail Image.png
Description

Underserved communities are disproportionately impacted by climate change, and current inequities present in our emissions-heavy transportation system only exacerbate these burdens. As of 2019, transportation accounted for 29% of total GHG emissions in the United States. Electric Vehicles (EVs) present an opportunity to lower emissions associated with transportation, as EVs

Underserved communities are disproportionately impacted by climate change, and current inequities present in our emissions-heavy transportation system only exacerbate these burdens. As of 2019, transportation accounted for 29% of total GHG emissions in the United States. Electric Vehicles (EVs) present an opportunity to lower emissions associated with transportation, as EVs emit zero tailpipe emissions. We define electric vehicles as cars, bikes, scooters, buses, and rail systems. As transitions to EVs occur, action can be taken to adopt more equitable practices within the transportation space, specifically in historically underserved communities.

In partnership with The City of Phoenix’s EV Department, and with additional support from the Housing Department, the EV Changers team developed a transportation-oriented survey to be distributed to the Edison-Eastlake Community (EEC) in Phoenix. Efforts to understand the EEC’s needs will lend to more efficient, connected, and accessible transportation in the upcoming transportation electrification movement.

ContributorsDavis, Stephanie (Author) / Dent, Sam (Author) / Georgiou, Stephanie (Author) / Keller, Adrian (Author) / Tsark, ISabella (Author)
Created2022-05
127834-Thumbnail Image.png
Description

Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both

Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both social and ecological vulnerability in Michigan’s Huron River watershed, USA, a quasi-experiment was conducted to examine the effects of Climate Justice mapping intervention on residents’ perceptions and preparedness for climate change associated hazards in Michigan. Two groups were compared: residents in Climate Justice areas with high social and ecological vulnerability scores in the watershed (n=76) and residents in comparison areas in Michigan (n=69). Measurements for risk perception include perceived exposure, sensitivity, and adaptability to hazards. Results indicate that risk information has a significant effect on perceived sensitivity and level of preparedness for future climate extremes among participants living in Climate Justice areas. Findings highlight the value of integrating scientific risk assessment information in risk communication to align calculated and perceived risks. This study suggests effective risk communication can influence local support of climate action plans and implementation of strategies that address climate justice and achieve social sustainability in local communities.

ContributorsCheng, Chingwen (Author) / Tsai, Jiun-Yi (Author) / Yang, Y. C. Ethan (Author) / Esselman, Rebecca (Author) / Kalcic, Margaret (Author) / Xu, Xin (Author) / Mohai, Paul (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2017-10-12
127813-Thumbnail Image.png
Description

Green infrastructure serves as a critical no-regret strategy to address climate change mitigation and adaptation in climate action plans. Climate justice refers to the distribution of climate change-induced environmental hazards (e.g., increased frequency and intensity of floods) among socially vulnerable groups. Yet no index has addressed both climate justice and

Green infrastructure serves as a critical no-regret strategy to address climate change mitigation and adaptation in climate action plans. Climate justice refers to the distribution of climate change-induced environmental hazards (e.g., increased frequency and intensity of floods) among socially vulnerable groups. Yet no index has addressed both climate justice and green infrastructure planning jointly in the USA. This paper proposes a spatial climate justice and green infrastructure assessment framework to understand social-ecological vulnerability under the impacts of climate change. The Climate Justice Index ranks places based on their exposure to climate change-induced flooding, and water contamination aggravated by floods, through hydrological modelling, GIS spatial analysis and statistical methodologies. The Green Infrastructure Index ranks access to biophysical adaptive capacity for climate change. A case study for the Huron River watershed in Michigan, USA, illustrates that climate justice hotspots are concentrated in large cities; yet these communities have the least access to green infrastructure. This study demonstrates the value of using GIS to assess the spatial distribution of climate justice in green infrastructure planning and thereby to prioritize infrastructure investment while addressing equity in climate change adaptation.

ContributorsCheng, Chingwen (Author)
Created2016-06-29