Matching Items (6)
Filtering by

Clear all filters

156772-Thumbnail Image.png
Description

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and making infrastructure reliable to maintain its function up to a designed system capacity. However, alterations happening in the earth system (e.g., atmosphere, oceans, land, and ice) and in human systems (e.g., greenhouse gas emission, population, land-use, technology, and natural resource use) are increasing the uncertainties in weather predictions and risk calculations and making it difficult for engineered infrastructure to maintain intended design thresholds in non-stationary future. This dissertation presents a new way to develop safe-to-fail infrastructure that departs from the current practice of risk calculation and is able to manage failure consequences when unpredicted risks overwhelm engineered systems.

This dissertation 1) defines infrastructure failure, refines existing safe-to-fail theory, and compares decision considerations for safe-to-fail vs. fail-safe infrastructure development under non-stationary climate; 2) suggests an approach to integrate the estimation of infrastructure failure impacts with extreme weather risks; 3) provides a decision tool to implement resilience strategies into safe-to-fail infrastructure development; and, 4) recognizes diverse perspectives for adopting safe-to-fail theory into practice in various decision contexts.

Overall, this dissertation advances safe-to-fail theory to help guide climate adaptation decisions that consider infrastructure failure and their consequences. The results of this dissertation demonstrate an emerging need for stakeholders, including policy makers, planners, engineers, and community members, to understand an impending “infrastructure trolley problem”, where the adaptive capacity of some regions is improved at the expense of others. Safe-to-fail further engages stakeholders to bring their knowledge into the prioritization of various failure costs based on their institutional, regional, financial, and social capacity to withstand failures. This approach connects to sustainability, where city practitioners deliberately think of and include the future cost of social, environmental and economic attributes in planning and decision-making.

ContributorsKim, Yeowon (Author) / Chester, Mikhail (Thesis advisor) / Eakin, Hallie (Committee member) / Redman, Charles (Committee member) / Miller, Thaddeus R. (Committee member) / Arizona State University (Publisher)
Created2018
156828-Thumbnail Image.png
Description
Infrastructure are increasingly being recognized as too rigid to quickly adapt to a changing climate and a non-stationary future. This rigidness poses risks to and impacts on infrastructure service delivery and public welfare. Adaptivity in infrastructure is critical for managing uncertainties to continue providing services, yet little is known about

Infrastructure are increasingly being recognized as too rigid to quickly adapt to a changing climate and a non-stationary future. This rigidness poses risks to and impacts on infrastructure service delivery and public welfare. Adaptivity in infrastructure is critical for managing uncertainties to continue providing services, yet little is known about how infrastructure can be made more agile and flexible towards improved adaptive capacity. A literature review identified approximately fifty examples of novel infrastructure and technologies which support adaptivity through one or more of ten theoretical competencies of adaptive infrastructure. From these examples emerged several infrastructure forms and possible strategies for adaptivity, including smart technologies, combined centralized/decentralized organizational structures, and renewable electricity generation. With institutional and cultural support, such novel structures and systems have the potential to transform infrastructure provision and management.
ContributorsGilrein, Erica (Author) / Chester, Mikhail (Thesis advisor) / Garcia, Margaret (Committee member) / Allenby, Braden (Committee member) / Arizona State University (Publisher)
Created2018
154911-Thumbnail Image.png
Description
In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County,

In the American Southwest, an area which already experiences a significant number of cooling degree days, anthropogenic climate change is expected to result in higher average temperatures and the increasing frequency, duration, and severity of heat waves. Climatological forecasts predict heat waves will increase by 150-840% in Los Angeles County, California and 340-1800% in Maricopa County, Arizona. Heat exposure is known to increase both morbidity and mortality and rising temperatures represent a threat to public health. As a result there has been a significant amount of research into understanding existing socio-economic vulnerabilities to extreme heat which has identified population subgroups at greater risk of adverse health outcomes. Additionally, research has shown that man-made infrastructure can mitigate or exacerbate these health risks. However, while recent socio-economic heat vulnerability research has developed geospatially explicit results, research which links it directly with infrastructure characteristics is limited. Understanding how socio-economic vulnerabilities interact with infrastructure systems is a critical component to developing climate adaptation policies and programs which efficiently and effectively mitigate health risks associated with rising temperatures.

The availability of cooled space, whether public or private, has been shown to greatly reduce health risks associated with extreme heat. However, a lack of fine-scale knowledge of which households have access to this infrastructure results in an incomplete understanding of the health risks associated with heat. This knowledge gap could result in the misallocation of resources intended to mitigate negative health impacts associated with heat exposure. Additionally, when discussing accessibility to public cooled space there are underlying questions of mobility and mode choice. In addition to captive riders, a growing emphasis on walking, biking and public transit will likely expose additional choice riders to extreme temperatures and compound existing vulnerabilities to heat.
ContributorsFraser, Andrew Michael (Author) / Chester, Mikhail (Thesis advisor) / Seager, Thomas (Committee member) / Zhou, Xuesong (Committee member) / Kuby, Michael (Committee member) / Arizona State University (Publisher)
Created2016
147800-Thumbnail Image.png
Description

The application of Toni Morrison’s Beloved as a lens through which one can analyze intergenerational trauma on an individual and communal level results in a blueprint towards a remedial process. The characters and their experiences in her novel are representative of a myriad of ways in which trauma is manifested.

The application of Toni Morrison’s Beloved as a lens through which one can analyze intergenerational trauma on an individual and communal level results in a blueprint towards a remedial process. The characters and their experiences in her novel are representative of a myriad of ways in which trauma is manifested. I have broken down the concept of intergenerational trauma into the idea that it can be seen as the state where one is both simultaneously “falling” and “fallen” at the same time. Used here, the term “falling” refers to the consistent, individual trauma that one is experiencing. On the other hand, the term “fallen” refers to the trauma that a community as a whole has experienced and internalized. This framework that I establish based off of Beloved is a launching point for the conversation surrounding the topic of remedial actions in relation to intergenerational trauma that resulted from slavery. Using it as a basis of knowledge allows one to truly gather the weight of the situation regarding trauma postbellum. Considering the current climate surrounding any meaningful dialogue, knowledge is one of the most important aspects. Along with the concepts of “falling”/”fallen,” I also coined the term productive memory, which refers to the act of confrontation as well as the remembering of intergenerational trauma. The use of productive memory is imperative in addressing the prior ideas presented regarding intergenerational trauma and the possible pathways to move forward.

ContributorsCampbell, Hugh Fitz (Author) / Soares, Rebecca (Thesis director) / Agruss, David (Committee member) / School of Politics and Global Studies (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131609-Thumbnail Image.png
Description
In the event of a climate disaster, everything changes, but the places we’ve romanticized as a frontier will become new to us once again. New Sonoran is, in essence, an American story on a global problem. It draws on American pioneer/Old West/cowboy culture, the lasting effects of climate change denial,

In the event of a climate disaster, everything changes, but the places we’ve romanticized as a frontier will become new to us once again. New Sonoran is, in essence, an American story on a global problem. It draws on American pioneer/Old West/cowboy culture, the lasting effects of climate change denial, and the individualism that pervades American culture. I want to use this project to underscore the actual isolation of individualism, as well as create a new story that speaks to a problematic but evocative cultural history while accessing an uncertain future. For this project, I drew from a varied palette of media: comics, video games, and the pervasive cultural malaise that surrounds my current generation.
The work is based in anxieties, but its media influences are a strong indicator of tone and concept. At the very least, they helped me articulate why I wanted to work on a graphic novel on a post-climate change Sonoran. This desert that I’ve grown used to will change irrevocably, but it will be a new frontier to explore while the old will become a loss to mourn. This cycle of change is something I want to highlight in my work: we can worry, mourn, and fear, but there’s going to be something new.
New Sonoran is a graphic novel based upon the journey of Sage, a cartographer and anthropologist who travels the desert, annotating maps and studying a desert irrevocably affected by global climate change. As she catalogues the changes and losses in this new landscape, she learns how residents have adapted, and how people may still relate to the land.
ContributorsBarbee, Amelia Bernadette (Author) / Soares, Rebecca (Thesis director) / Schmidt, Peter (Committee member) / Department of English (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164501-Thumbnail Image.png
Description
Climate change has necessitated the transition from non-renewable energy sources such as coal, oil, and natural gas to renewable, low-carbon energy sources such as solar, wind, and hydroelectric. These energy sources, although much better equipped to reduce carbon-induced climate change, require materials that pollute the environment when mined and can

Climate change has necessitated the transition from non-renewable energy sources such as coal, oil, and natural gas to renewable, low-carbon energy sources such as solar, wind, and hydroelectric. These energy sources, although much better equipped to reduce carbon-induced climate change, require materials that pollute the environment when mined and can release toxic waste during processing and disposal. Critical minerals are used in low-carbon renewable energy, and they are subject to both the environmental issues that accompany regular mineral extraction as well as issues related to scarcity from geopolitical issues, trade policy, and geological rarity. Tellurium is a critical mineral produced primarily as a byproduct of copper and used in cadmium-telluride (CdTe) solar panels. As these solar panels become more common, the problems that arise with many critical minerals’ usage (pollution, unfair distribution, human health complications) become more apparent. Looking at these issues through an energy justice framework can help to ensure availability, sustainability, inter/intragenerational equity, and accountability, and this framework can provide a more nuanced understanding of the costs and the benefits that will accrue with the transition to low-carbon, renewable energy. Energy justice issues surrounding the extraction of critical minerals will become increasingly prevalent as more countries pledge to have a zero-carbon future.
ContributorsMaas, Samantha (Author) / Jalbert, Kirk (Thesis director) / Chester, Mikhail (Committee member) / Barrett, The Honors College (Contributor) / School of Public Affairs (Contributor) / School of Life Sciences (Contributor)
Created2022-05