Matching Items (13)
Filtering by

Clear all filters

141435-Thumbnail Image.png
Description

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite

Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona's Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C).

Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for hydrologic impacts in addition to continued focus on mean temperature effects.

ContributorsGeorgescu, Matei (Author) / Mahalov, A. (Author) / Moustaoui, M. (Author)
Created2012-09-07
141438-Thumbnail Image.png
Description

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed

Maricopa County, Arizona, anchor to the fastest growing megapolitan area in the United States, is located in a hot desert climate where extreme temperatures are associated with elevated risk of mortality. Continued urbanization in the region will impact atmospheric temperatures and, as a result, potentially affect human health. We aimed to quantify the number of excess deaths attributable to heat in Maricopa County based on three future urbanization and adaptation scenarios and multiple exposure variables.

Two scenarios (low and high growth projections) represent the maximum possible uncertainty range associated with urbanization in central Arizona, and a third represents the adaptation of high-albedo cool roof technology. Using a Poisson regression model, we related temperature to mortality using data spanning 1983–2007. Regional climate model simulations based on 2050-projected urbanization scenarios for Maricopa County generated distributions of temperature change, and from these predicted changes future excess heat-related mortality was estimated. Subject to urbanization scenario and exposure variable utilized, projections of heat-related mortality ranged from a decrease of 46 deaths per year (− 95%) to an increase of 339 deaths per year (+ 359%).

Projections based on minimum temperature showed the greatest increase for all expansion and adaptation scenarios and were substantially higher than those for daily mean temperature. Projections based on maximum temperature were largely associated with declining mortality. Low-growth and adaptation scenarios led to the smallest increase in predicted heat-related mortality based on mean temperature projections. Use of only one exposure variable to project future heat-related deaths may therefore be misrepresentative in terms of direction of change and magnitude of effects. Because urbanization-induced impacts can vary across the diurnal cycle, projections of heat-related health outcomes that do not consider place-based, time-varying urban heat island effects are neglecting essential elements for policy relevant decision-making.

ContributorsHondula, David M. (Author) / Georgescu, Matei (Author) / Balling, Jr., Robert C. (Author)
Created2014-04-28
141439-Thumbnail Image.png
Description

The urban heat island effect is especially significant in semi-arid climates, generating a myriad of problems for large urban areas. Green space can mitigate warming, providing cooling benefits important to reducing energy consumption and improving human health. The arrangement of green space to reap the full potential of cooling benefits

The urban heat island effect is especially significant in semi-arid climates, generating a myriad of problems for large urban areas. Green space can mitigate warming, providing cooling benefits important to reducing energy consumption and improving human health. The arrangement of green space to reap the full potential of cooling benefits is a challenge, especially considering the diurnal variations of urban heat island effects. Surprisingly, methods that support the strategic placement of green space in the context of urban heat island are lacking. Integrating geographic information systems, remote sensing, spatial statistics and spatial optimization, we developed a framework to identify the best locations and configuration of new green space with respect to cooling benefits. The developed multi-objective model is applied to evaluate the diurnal cooling trade-offs in Phoenix, Arizona. As a result of optimal green space placement, significant cooling potentials can be achieved. A reduction of land surface temperature of approximately 1–2 °C locally and 0.5 °C regionally can be achieved by the addition of new green space. 96% of potential day and night cooling benefits can be achieved through simultaneous consideration. The results also demonstrate that clustered green space enhances local cooling because of the agglomeration effect; whereas, dispersed patterns lead to greater overall regional cooling. The optimization based framework can effectively inform planning decisions with regard to green space allocation to best ameliorate excessive heat.

ContributorsZhang, Yujia (Author) / Murray, Alan T. (Author) / Turner, II, B.L. (Author)
Created2017-07-31
141440-Thumbnail Image.png
Description

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic

Engineered pavements cover a large fraction of cities and offer significant potential for urban heat island mitigation. Though rapidly increasing research efforts have been devoted to the study of pavement materials, thermal interactions between buildings and the ambient environment are mostly neglected. In this study, numerical models featuring a realistic representation of building-environment thermal interactions, were applied to quantify the effect of pavements on the urban thermal environment at multiple scales. It was found that performance of pavements inside the canyon was largely determined by the canyon geometry. In a high-density residential area, modifying pavements had insignificant effect on the wall temperature and building energy consumption. At a regional scale, various pavement types were also found to have a limited cooling effect on land surface temperature and 2-m air temperature for metropolitan Phoenix. In the context of global climate change, the effect of pavement was evaluated in terms of the equivalent CO2 emission. Equivalent CO2 emission offset by reflective pavements in urban canyons was only about 13.9e46.6% of that without building canopies, depending on the canyon geometry. This study revealed the importance of building-environment thermal interactions in determining thermal conditions inside the urban canopy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Dylla, Heather (Author)
Created2016-08-22
141370-Thumbnail Image.png
Description

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is

Global environmental change and sustainability science increasingly recognize the need to address the consequences of changes taking place in the structure and function of the biosphere. These changes raise questions such as: Who and what are vulnerable to the multiple environmental changes underway, and where? Research demonstrates that vulnerability is registered not by exposure to hazards (perturbations and stresses) alone but also resides in the sensitivity and resilience of the system experiencing such hazards. This recognition requires revisions and enlargements in the basic design of vulnerability assessments, including the capacity to treat coupled human–environment systems and those linkages within and without the systems that affect their vulnerability. A vulnerability framework for the assessment of coupled human–environment systems is presented.

Research on global environmental change has significantly improved our understanding of the structure and function of the biosphere and the human impress on both (1). The emergence of “sustainability science” (2–4) builds toward an understanding of the human–environment condition with the dual objectives of meeting the needs of society while sustaining the life support systems of the planet. These objectives, in turn, require improved dialogue between science and decision making (5–8). The vulnerability of coupled human–environment systems is one of the central elements of this dialogue and sustainability research (6, 9–11). It directs attention to such questions as: Who and what are vulnerable to the multiple environmental and human changes underway, and where? How are these changes and their consequences attenuated or amplified by different human and environmental conditions? What can be done to reduce vulnerability to change? How may more resilient and adaptive communities and societies be built?

Answers to these and related questions require conceptual frameworks that account for the vulnerability of coupled human–environment systems with diverse and complex linkages. Various expert communities have made considerable progress in pointing the way toward the design of these frameworks (10, 11). These advances are briefly reviewed here and, drawing on them, we present a conceptual framework of vulnerability developed by the Research and Assessment Systems for Sustainability Program (http://sust.harvard.edu) that produced the set of works in this Special Feature of PNAS. The framework aims to make vulnerability analysis consistent with the concerns of sustainability and global environmental change science. The case study by Turner et al. (12) in this issue of PNAS illustrates how the framework informs vulnerability assessments.

ContributorsTurner II, B. L. (Author) / Kasperson, Roger E. (Author) / Matson, Pamela A. (Author) / McCarthy, James J. (Author) / Corell, Robert W. (Author) / Christensen, Lindsey (Author) / Eckley, Noelle (Author) / Kasperson, Jeanne X. (Author) / Luers, Amy (Author) / Martello, Marybeth L. (Author) / Polsky, Colin (Author) / Pulsipher, Alexander (Author) / Schiller, Andrew (Author)
Created2003-03-07
141371-Thumbnail Image.png
Description

We use the Northeast US Urban Climate Archipelago as a case study to explore three key limitations of planning and policy initiatives to mitigate extreme urban heat. These limitations are: (1) a lack of understanding of spatial considerations—for example, how nearby urban areas interact, affecting, and being affected by, implementation

We use the Northeast US Urban Climate Archipelago as a case study to explore three key limitations of planning and policy initiatives to mitigate extreme urban heat. These limitations are: (1) a lack of understanding of spatial considerations—for example, how nearby urban areas interact, affecting, and being affected by, implementation of such policies; (2) an emphasis on air temperature reduction that neglects assessments of other important meteorological parameters, such as humidity, mixing heights, and urban wind fields; and (3) too narrow of a temporal focus—either time of day, season, or current vs. future climates. Additionally, the absence of a direct policy/planning linkage between heat mitigation goals and actual human health outcomes, in general, leads to solutions that only indirectly address the underlying problems. These issues are explored through several related atmospheric modeling case studies that reveal the complexities of designing effective urban heat mitigation strategies. We conclude with recommendations regarding how policy-makers can optimize the performance of their urban heat mitigation policies and programs. This optimization starts with a thorough understanding of the actual end-point goals of these policies, and concludes with the careful integration of scientific knowledge into the development of location-specific strategies that recognize and address the limitations discussed herein.

ContributorsSailor, David (Author) / Shepherd, Marshall (Author) / Sheridan, Scott (Author) / Stone, Brian (Author) / Laurence, Kalkstein (Author) / Russell, Armistead (Author) / Vargo, Jason (Author) / Andersen, Theresa (Author)
Created2016-10-12
141380-Thumbnail Image.png
Description

Urban Heat Island (UHI) has significant impacts on the buildings energy consumption and outdoor air quality (OAQ). Various approaches, including observation and simulation techniques, have been proposed to understand the causes of UHI formation and to find the corresponding mitigation strategies. However, the causes of UHI are not the same

Urban Heat Island (UHI) has significant impacts on the buildings energy consumption and outdoor air quality (OAQ). Various approaches, including observation and simulation techniques, have been proposed to understand the causes of UHI formation and to find the corresponding mitigation strategies. However, the causes of UHI are not the same in different climates or city features. Thus, general conclusion cannot be made based on limited monitoring data.

With recent progress in computational tools, simulation methods have been used to study UHI. These approaches, however, are also not able to cover all the phenomena that simultaneously contribute to the formation of UHI. The shortcomings are mostly attributed to the weakness of the theories and computational cost.

This paper presents a review of the techniques used to study UHI. The abilities and limitations of each approach for the investigation of UHI mitigation and prediction are discussed. Treatment of important parameters including latent, sensible, storage, and anthropogenic heat in addition to treatment of radiation, effect of trees and pond, and boundary condition to simulate UHI is also presented. Finally, this paper discusses the application of integration approach as a future opportunity.

ContributorsMirzaei, Parham A. (Author) / Haghighat, Fariborz (Author)
Created2010-04-11
141382-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Raymond (Author)
Created2015
141391-Thumbnail Image.png
Description

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This

Rapid urbanization of the planet is occurring at an unprecedented pace, primarily in arid and semi-arid hot climates [Golden, J.S., 2004. The built environment induced urban heat island effect in rapidly urbanizing arid regions – a sustainable urban engineering complexity. Environ. Sci. J. Integr. Environ. Res. 1 (4), 321–349]. This growth has manifested itself as a cause of various impacts including elevated urban temperatures in comparison to rural sites known as the Urban Heat Island (UHI) effect [Oke, T.R., 1982. The energetic basis of the urban heat island. Q. J. R. Meteor. Soc. 108, 1–24]. Related are the increased demands for electric power as a result of population growth and increased need for mechanical cooling due to the UHI. In the United States, the Environmental Protection Agency has developed a three-prong approach of (1) cool pavements, (2) urban forestry and (3) cool roofs to mitigate the UHI. Researchers undertook an examination of micro scale benefits of the utilization of photovoltaic panels to reduce the thermal impacts to surface temperatures of pavements in comparison to urban forestry. The results of the research indicate that photovoltaic panels provide a greater thermal reduction benefit during the diurnal cycle in comparison to urban forestry while also providing the additional benefits of supporting peak energy demand, conserving water resources and utilizing a renewable energy source.

ContributorsGolden, Jay S. (Author) / Carlson, Joby (Author) / Kaloush, Kamil (Author) / Phelan, Patrick (Author)
Created2006-12-26
Description
In Greater Phoenix, urban heat is impacting health, safety, and the economy and these impacts are expected to worsen over time. The number of days above 110˚F are projected to more than double by 2060. In May 2017, The Nature Conservancy, Maricopa County Department of Public Health, Central Arizona Conservation

In Greater Phoenix, urban heat is impacting health, safety, and the economy and these impacts are expected to worsen over time. The number of days above 110˚F are projected to more than double by 2060. In May 2017, The Nature Conservancy, Maricopa County Department of Public Health, Central Arizona Conservation Alliance, Urban Resilience to Extremes Sustainability Research Network, Arizona State University’s Urban Climate Research Center, and Center for Whole Communities launched a participatory Heat Action Planning process to identify both mitigation and adaptation strategies to reduce heat directly and improve the ability of residents to deal with heat. Community-based organizations with existing relationships in three neighborhoods selected for Heat Action Planning later joined the project team: Phoenix Revitalization Corporation, RAILMesa, and Puente Movement. Beyond building a community Heat Action Plan and completing demonstration projects, this participatory process was designed to develop awareness, agency, and social cohesion in underrepresented communities. Furthermore, the Heat Action Planning process was designed to serve as a model for future heat resilience efforts and create a local, contextual, and culturally appropriate vision of a safer, healthier future. The iterative planning and engagement method used by the project team strengthened relationships within and between neighborhoods, community-based organizations, decision-makers, and the core team, and it combined storytelling wisdom and scientific evidence to better understand current and future challenges residents face during extreme heat events.
As a result of three workshops within each community, the residents brought forth ideas that they want to see implemented to increase their thermal comfort and safety during extreme heat days. As depicted below, residents’ ideas intersected around similar concepts, but specific solutions varied across neighborhoods. For example, all neighborhoods would like to add shade to their pedestrian corridors but preferences for the location of shade improvements differed. Some neighborhoods prioritized routes to public transportation, others prioritized routes used by children on their way to school, and others wanted to see shaded rest stops in key places. Four overarching strategic themes emerged across all three neighborhoods: advocate and educate; improve comfort/ability to cope; improve safety; build capacity. These themes signal that there are serious heat safety challenges in residents’ day-to-day lives and that community, business, and decision-making sectors need to address those challenges.
Heat Action Plan elements are designed to be incorporated into other efforts to alleviate heat, to create climate-resilient cities, and to provide public health and safety. Heat Action Plan implementation partners are identified drawing from the Greater Phoenix region, and recommendations are given for supporting the transformation to a cooler city.
To scale this approach, project team members recommend a) continued engagement with and investments into these neighborhoods to implement change signaled by residents as vital, b) repeating the heat action planning process with community leaders in other neighborhoods, and c) working with cities, urban planners, and other stakeholders to institutionalize this process, supporting policies, and the use of proposed metrics for creating cooler communities.
ContributorsNature Conservancy (U.S.) (Contributor)
Created2019