Matching Items (3)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
153722-Thumbnail Image.png
Description
Alfalfa is a major feed crop widely cultivated in the United States. It is the fourth largest crop in acreage in the US after corn, soybean, and all types of wheat. As of 2003, about 48% of alfalfa was produced in the western US states where alfalfa ranks first, second,

Alfalfa is a major feed crop widely cultivated in the United States. It is the fourth largest crop in acreage in the US after corn, soybean, and all types of wheat. As of 2003, about 48% of alfalfa was produced in the western US states where alfalfa ranks first, second, or third in crop acreage. Considering that the western US is historically water-scarce and alfalfa is a water-intensive crop, it creates a concern about exacerbating the current water crisis in the US west. Furthermore, the recent increased export of alfalfa from the western US states to China and the United Arab Emirates has fueled the debate over the virtual water content embedded in the crop. In this study, I analyzed changes of cropland systems under the three basic scenarios, using a stylized model with a combination of dynamical, hydrological, and economic elements. The three scenarios are 1) international demands for alfalfa continue to grow (or at least to stay high), 2) deficit irrigation is widely imposed in the dry region, and 3) long-term droughts persist or intensify reducing precipitation. The results of this study sheds light on how distribution of crop areas responds to climatic, economic, and institutional conditions. First, international markets, albeit small compared to domestic markets, provide economic opportunities to increase alfalfa acreage in the dry region. Second, potential water savings from mid-summer deficit irrigation can be used to expand alfalfa production in the dry region. Third, as water becomes scarce, farmers more quickly switch to crops that make more economic use of the limited water.
ContributorsKim, Booyoung (Author) / Muneepeerakul, Rachata (Thesis advisor) / Ruddell, Benjamin (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2015
157859-Thumbnail Image.png
Description
Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C

Soil organic carbon (SOC) is a critical component of the global carbon (C) cycle, accounting for more C than the biotic and atmospheric pools combined. Microbes play an important role in soil C cycling, with abiotic conditions such as soil moisture and temperature governing microbial activity and subsequent soil C processes. Predictions for future climate include warmer temperatures and altered precipitation regimes, suggesting impacts on future soil C cycling. However, it is uncertain how soil microbial communities and subsequent soil organic carbon pools will respond to these changes, particularly in dryland ecosystems. A knowledge gap exists in soil microbial community responses to short- versus long-term precipitation alteration in dryland systems. Assessing soil C cycle processes and microbial community responses under current and altered precipitation patterns will aid in understanding how C pools and cycling might be altered by climate change. This study investigates how soil microbial communities are influenced by established climate regimes and extreme changes in short-term precipitation patterns across a 1000 m elevation gradient in northern Arizona, where precipitation increases with elevation. Precipitation was manipulated (50% addition and 50% exclusion of ambient rainfall) for two summer rainy seasons at five sites across the elevation gradient. In situ and ex situ soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were measured in precipitation treatments in all sites. Soil CO2 flux, microbial biomass C, extracellular enzyme activity, and SOC were highest at the three highest elevation sites compared to the two lowest elevation sites. Within sites, precipitation treatments did not change microbial biomass C, extracellular enzyme activity, and SOC. Soil CO2 flux was greater under precipitation addition treatments than exclusion treatments at both the highest elevation site and second lowest elevation site. Ex situ respiration differed among the precipitation treatments only at the lowest elevation site, where respiration was enhanced in the precipitation addition plots. These results suggest soil C cycling will respond to long-term changes in precipitation, but pools and fluxes of carbon will likely show site-specific sensitivities to short-term precipitation patterns that are also expected with climate change.
ContributorsMonus, Brittney (Author) / Throop, Heather L (Thesis advisor) / Ball, Becky A (Committee member) / Hultine, Kevin R (Committee member) / Munson, Seth M (Committee member) / Arizona State University (Publisher)
Created2019