Matching Items (25)
Filtering by

Clear all filters

136634-Thumbnail Image.png
Description
The goal of this project is to gain and use knowledge of sustainability topics as a value-adding function for a business in the Tempe, AZ area and to develop the skills to approach and consult with business owners and staff about sustainable business options. Sustainability searches for a balance between

The goal of this project is to gain and use knowledge of sustainability topics as a value-adding function for a business in the Tempe, AZ area and to develop the skills to approach and consult with business owners and staff about sustainable business options. Sustainability searches for a balance between society, economy and the environment where all three can thrive; therefore, the ideal project partner was a business that values the wellbeing of mankind, is locally owned and operated and promotes environmental stewardship. The Original Chop Shop Co in Tempe Arizona was appropriately selected. Throughout the duration of our partnership, I observed their daily routine, interviewed employees and managers and used the collected information to identify three areas of focus that have the largest potential to reduce The Original Chop Shop Company's impact on the environment. Information on the areas of recycling, composting, and food sourcing was researched and synthesized to make suggestions for ecofriendly changes to business practices. The scope of the project includes small changes in daily practices such as implementing a recycling and composting program and employee training sessions and minor investments such as purchasing a micro washer and silverware in order to eliminate nonrenewable plastic utensils. The scope does not include major renovations or investments in technology. The suggestions offered position The Original Chop Shop to conduct business in a way that does not compromise the health of the environment, society, or economy.
ContributorsFerry, Brianna Aislinn (Author) / Dooley, Kevin (Thesis director) / Darnall, Nicole (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / School of Politics and Global Studies (Contributor)
Created2015-05
132802-Thumbnail Image.png
Description
This proposal lays out the business case for Isagenix International to adopt circular packaging that is compatible with the circular economy. I first give a brief background on plastic packaging and the environmental risks that go along with it. After explaining how a linear economy is unsustainable, I introduce the

This proposal lays out the business case for Isagenix International to adopt circular packaging that is compatible with the circular economy. I first give a brief background on plastic packaging and the environmental risks that go along with it. After explaining how a linear economy is unsustainable, I introduce the concept of a circular economy. I then explain the competitive advantages that Isagenix can gain over its competitors from pursuing circular or sustainable packaging, and provide a benchmarking analysis of other companies’ sustainable packaging goals. After establishing the reasons that Isagenix should pursue this initiative, I go into an explanation of how Isagenix should design packaging for circularity and educate consumers on how to recycle their packaging products. Lastly, I propose my three recommendations for action that Isagenix should start with to begin transitioning all of their packaging to be circular.
ContributorsPatel, Tanvi (Author) / Dooley, Kevin (Thesis director) / Cloutier, Scott (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133048-Thumbnail Image.png
Description
As the sustainability issue of solid waste management magnifies worldwide, organizations are considering making their offices or operations Zero Waste, but many do not understand how or where to start. With the goal of contributing insights and advice to future designers and managers of Zero Waste programs, this thesis explores

As the sustainability issue of solid waste management magnifies worldwide, organizations are considering making their offices or operations Zero Waste, but many do not understand how or where to start. With the goal of contributing insights and advice to future designers and managers of Zero Waste programs, this thesis explores notable attributes of existing Zero Waste programs through case interviews and documents the researcher’s own journey in designing and executing a Zero Waste program at the Sprouts Farmers Market headquarters. The result is a detailed account that reveals how the Sprouts program was executed, how it could be improved, and which practices future Zero Waste program managers should use to maximize the success of their program. These practices include building personal and trusting relationships with the network of people involved; remaining flexible, patient and passionate; conducting thorough quantitative research on the proposed changes; and tailoring communication to effectively motivate behavior change.
ContributorsPowell, Emily Eva (Author) / Behravesh, Shirley-Ann (Thesis director) / Ferrin, Erika (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133666-Thumbnail Image.png
Description
Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down

Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down into pellets mechanically, and re-extruded into filament. This simulates a recycling iteration that the material would undergo in industry. The samples are recycled 0, 1, 3, and 5 times, then printed into rectangular and dog-bone shapes. These shapes are used to perform dynamic mechanical analysis (DMA) and 3-point bending for shape recovery testing. Samples will also be used for scanning electron microscopy (SEM) to characterize their microstructure.
ContributorsSweeney, Andrew Joseph (Author) / Yekani Fard, Masoud (Thesis director) / Chattopadhyay, Aditi (Committee member) / W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134867-Thumbnail Image.png
Description
Filament used in 3D printers can vary by size, color, and material. Most commonly thermoplastics are used for rapid prototyping by industry. Recycled filament has the potential to reduce cost and provide a more sustainable and energy efficient approach to 3D printing. This can be a viable option if recycled

Filament used in 3D printers can vary by size, color, and material. Most commonly thermoplastics are used for rapid prototyping by industry. Recycled filament has the potential to reduce cost and provide a more sustainable and energy efficient approach to 3D printing. This can be a viable option if recycled parts show comparable mechanical characteristics to non-recycled material. This report focuses on the development of a methodology to efficiently characterize recycled filament for application in industry. A crush sample in the shape of a hollow cube and a dog-bone shaped specimen will be created using a filament extruder and 3D printer. The crush sample will be broken and extruded to produce a recycled filament. The crush sample will undergo a varying number of recycles (i.e. breakings) per sample group to simulate mechanical degradation; 0, 1, 2, and 5 recycling loops. The samples will undergo micro mechanical (microscopy analysis) and macro mechanical (tensile) characterization.
ContributorsPalermo, Marissa Nicole (Author) / Chattopadhyay, Aditi (Thesis director) / Yekani Fard, Masoud (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134802-Thumbnail Image.png
Description
Three dimensional printing is a growing field and an excellent medium for rapid prototyping. Its expansion has accelerated over recent years due to the increased affordability of the technology. It is now at the point where the startup cost to get into the field is down to the hobbyist price

Three dimensional printing is a growing field and an excellent medium for rapid prototyping. Its expansion has accelerated over recent years due to the increased affordability of the technology. It is now at the point where the startup cost to get into the field is down to the hobbyist price point. This means that there is an extremely high demand for affordable printing media. Current media such as ABS and PLA is extremely easy to form, but expensive and petroleum intensive to create. A recycling system that could work with a large variety of waste products could change the way that the maker community recycles. This Honors Thesis, or "Creative Project" will be centered on the product launch of small business 3DCycler. Although this launch will require pulling information and skills from various branches of both Business and Science, the scope of this project will be limited to specifically the market entrance of our small business/ product. Within this blanket goal, the project aims to define our target market/ its niche(s), develop proper IP/ lockout strategies, define future manufacturing strategies, and to fully define our beta product. The research was empirical in nature. Through data gathering techniques (e.g., consultations, interviews, survey), exploration was performed. Through these techniques the company 3DCycler took several calculated pivots in order to prepare the company for a strategic product launch and eventual acquisition.
ContributorsFarber-Schaefer, Blaine (Author) / Cho, Steve (Thesis director) / Goodman, Tom (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135048-Thumbnail Image.png
Description
In Professor Meng Tao and Wen-His Huang's paper's [1,2] the recycling process to create a sustainable Photovoltaic (PV) industry is laid out. The process utilized to recycle the materials requires the use of three semi-problematic chemicals including: Sodium Hydroxide (NaOH), Nitric Acid (HNO3), and Hydrofluoric Acid (HF). By utilizing a

In Professor Meng Tao and Wen-His Huang's paper's [1,2] the recycling process to create a sustainable Photovoltaic (PV) industry is laid out. The process utilized to recycle the materials requires the use of three semi-problematic chemicals including: Sodium Hydroxide (NaOH), Nitric Acid (HNO3), and Hydrofluoric Acid (HF). By utilizing a combination of reverse osmosis filtration, pre-lime treatment, neutralization by combination, and mineral specific filtering the chemicals can either by recycled as Environmental Protection Agency (EPA) standardized waste water or profitable byproducts such as Sodium Nitrate (NaNO3). For the recycling of hydrofluoric acid, a combination of pre-lime coagulation, microfiltration and a spiral wound reverse osmosis (RO) system, less than 1mg/L in line with national standards for human consumption. The sodium hydroxide and nitric acid recycling process handles more contaminants that just the byproduct of the chemicals and manages this through a combination of multi-stage flash/vapor distillation along with a reverse osmosis filtration system. By utilizing both systems of recycling, a completely closed loop system for recycling silicon solar cells is laid out and creates a new standard for clean energy management.
ContributorsHaft, Brock Todd (Author) / Tao, Meng (Thesis director) / Augusto, Andre (Committee member) / Barrett, The Honors College (Contributor)
Created2016-12
148015-Thumbnail Image.png
Description

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move

Though about 75 percent of American waste is recyclable, only 30 percent of it is actually recycled and less than ten percent of plastics disposed of in the United States in 2015 were recycled. A statistic like this demonstrates the immense need to increase recycling rates in order to move towards cultivating a circular economy and benefiting the environment. With Arizona State University’s (ASU) extensive population of on-campus students and faculty, our team was determined to create a solution that would increase recycling rates. After conducting initial market research, our team incentives or education. We conducted market research through student surveys to determine the level of knowledge of our target audience and barriers to entry for local recycling and composting resources. Further, we gained insight into the medium of recycling and sustainability programs they would be interested in participating in. Overall, the results of our surveys demonstrated that a majority of students were interested in participating in these programs, if they were not already involved, and most students on-campus already had access to these resources. Despite having access to these sustainable practices, we identified a knowledge gap between students and their information on how to properly execute sustainable practices such as composting and recycling. In order to address this audience, our team created Circulearning, an educational program that aims to bridge the gap of knowledge and address immediate concerns regarding circular economy topics. By engaging audiences through our quick, accessible educational modules and teaching them about circular practices, we aim to inspire everyone to implement these practices into their own lives. Though our team began the initiative with a focus on implementing these practices solely to ASU campus, we decided to expand our target audience to implement educational programs at all levels after discovering the interest and need for this resource in our community. Our team is extremely excited that our Circulearning educational modules have been shared with a broad audience including students at Mesa Skyline High School, ASU students, and additional connections outside of ASU. With Circulearning, we will educate and inspire people of all ages to live more sustainably and better the environment in which we live.

ContributorsTam, Monet (Co-author) / Chakravarti, Renuka (Co-author) / Carr-Taylor, Kathleen (Co-author) / Byrne, Jared (Thesis director) / Marseille, Alicia (Committee member) / Jordan, Amanda (Committee member) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147736-Thumbnail Image.png
Description

Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to

Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to develop a solution that can solve the problem. Working with InnovationSpace and people in industry, interviews were conducted in order to determine the best course of action to address the need of the sponsor, The Sustainability Consortium. After extensive research and interviews, it was determined that implementing a new MRF attachment to circulate small format back to the main residual stream would be the best course of action. This attachment would be modular for a MRF and could be implemented in order to gather more material while also producing higher quality recycled goods. This has major implications for the recycling industry and could help in making recycling profitable once again.

ContributorsSullivan, Neal (Author) / Kuhn, Anthony (Thesis director) / Heller, Cheryl (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines

Build. Learn. Repeat. The three core actions of Tanagons, a learning kit designed for the K-6 classroom in teaching kids about the "other Rs" of sustainability: repair, repurpose, and reimagine. By examining societal trends related to these new approaches to waste management, along with considerations of current K-6 curriculum guidelines and how to optimize learning while following them, Tanagons creates a more comprehensive and engaging learning experience of this complex topic in hopes of preparing children to be more conscious individuals in the mission for sustainability.

ContributorsChiu, Lucas (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Gumus-Ciftci, Hazal (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor)
Created2023-05