Matching Items (7)
Filtering by

Clear all filters

133666-Thumbnail Image.png
Description
Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down

Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down into pellets mechanically, and re-extruded into filament. This simulates a recycling iteration that the material would undergo in industry. The samples are recycled 0, 1, 3, and 5 times, then printed into rectangular and dog-bone shapes. These shapes are used to perform dynamic mechanical analysis (DMA) and 3-point bending for shape recovery testing. Samples will also be used for scanning electron microscopy (SEM) to characterize their microstructure.
ContributorsSweeney, Andrew Joseph (Author) / Yekani Fard, Masoud (Thesis director) / Chattopadhyay, Aditi (Committee member) / W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134867-Thumbnail Image.png
Description
Filament used in 3D printers can vary by size, color, and material. Most commonly thermoplastics are used for rapid prototyping by industry. Recycled filament has the potential to reduce cost and provide a more sustainable and energy efficient approach to 3D printing. This can be a viable option if recycled

Filament used in 3D printers can vary by size, color, and material. Most commonly thermoplastics are used for rapid prototyping by industry. Recycled filament has the potential to reduce cost and provide a more sustainable and energy efficient approach to 3D printing. This can be a viable option if recycled parts show comparable mechanical characteristics to non-recycled material. This report focuses on the development of a methodology to efficiently characterize recycled filament for application in industry. A crush sample in the shape of a hollow cube and a dog-bone shaped specimen will be created using a filament extruder and 3D printer. The crush sample will be broken and extruded to produce a recycled filament. The crush sample will undergo a varying number of recycles (i.e. breakings) per sample group to simulate mechanical degradation; 0, 1, 2, and 5 recycling loops. The samples will undergo micro mechanical (microscopy analysis) and macro mechanical (tensile) characterization.
ContributorsPalermo, Marissa Nicole (Author) / Chattopadhyay, Aditi (Thesis director) / Yekani Fard, Masoud (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134802-Thumbnail Image.png
Description
Three dimensional printing is a growing field and an excellent medium for rapid prototyping. Its expansion has accelerated over recent years due to the increased affordability of the technology. It is now at the point where the startup cost to get into the field is down to the hobbyist price

Three dimensional printing is a growing field and an excellent medium for rapid prototyping. Its expansion has accelerated over recent years due to the increased affordability of the technology. It is now at the point where the startup cost to get into the field is down to the hobbyist price point. This means that there is an extremely high demand for affordable printing media. Current media such as ABS and PLA is extremely easy to form, but expensive and petroleum intensive to create. A recycling system that could work with a large variety of waste products could change the way that the maker community recycles. This Honors Thesis, or "Creative Project" will be centered on the product launch of small business 3DCycler. Although this launch will require pulling information and skills from various branches of both Business and Science, the scope of this project will be limited to specifically the market entrance of our small business/ product. Within this blanket goal, the project aims to define our target market/ its niche(s), develop proper IP/ lockout strategies, define future manufacturing strategies, and to fully define our beta product. The research was empirical in nature. Through data gathering techniques (e.g., consultations, interviews, survey), exploration was performed. Through these techniques the company 3DCycler took several calculated pivots in order to prepare the company for a strategic product launch and eventual acquisition.
ContributorsFarber-Schaefer, Blaine (Author) / Cho, Steve (Thesis director) / Goodman, Tom (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135048-Thumbnail Image.png
Description
In Professor Meng Tao and Wen-His Huang's paper's [1,2] the recycling process to create a sustainable Photovoltaic (PV) industry is laid out. The process utilized to recycle the materials requires the use of three semi-problematic chemicals including: Sodium Hydroxide (NaOH), Nitric Acid (HNO3), and Hydrofluoric Acid (HF). By utilizing a

In Professor Meng Tao and Wen-His Huang's paper's [1,2] the recycling process to create a sustainable Photovoltaic (PV) industry is laid out. The process utilized to recycle the materials requires the use of three semi-problematic chemicals including: Sodium Hydroxide (NaOH), Nitric Acid (HNO3), and Hydrofluoric Acid (HF). By utilizing a combination of reverse osmosis filtration, pre-lime treatment, neutralization by combination, and mineral specific filtering the chemicals can either by recycled as Environmental Protection Agency (EPA) standardized waste water or profitable byproducts such as Sodium Nitrate (NaNO3). For the recycling of hydrofluoric acid, a combination of pre-lime coagulation, microfiltration and a spiral wound reverse osmosis (RO) system, less than 1mg/L in line with national standards for human consumption. The sodium hydroxide and nitric acid recycling process handles more contaminants that just the byproduct of the chemicals and manages this through a combination of multi-stage flash/vapor distillation along with a reverse osmosis filtration system. By utilizing both systems of recycling, a completely closed loop system for recycling silicon solar cells is laid out and creates a new standard for clean energy management.
ContributorsHaft, Brock Todd (Author) / Tao, Meng (Thesis director) / Augusto, Andre (Committee member) / Barrett, The Honors College (Contributor)
Created2016-12
147736-Thumbnail Image.png
Description

Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to

Currently, recycling is a major issue found throughout the world; however, one of the main issues, small format recycling, is still yet to be solved. The main objective of this paper is to discuss the issues surrounding recycling in general and more specifically small format recycling in order to develop a solution that can solve the problem. Working with InnovationSpace and people in industry, interviews were conducted in order to determine the best course of action to address the need of the sponsor, The Sustainability Consortium. After extensive research and interviews, it was determined that implementing a new MRF attachment to circulate small format back to the main residual stream would be the best course of action. This attachment would be modular for a MRF and could be implemented in order to gather more material while also producing higher quality recycled goods. This has major implications for the recycling industry and could help in making recycling profitable once again.

ContributorsSullivan, Neal (Author) / Kuhn, Anthony (Thesis director) / Heller, Cheryl (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We designed the Eco-Bead with 3D CAD modeling and produced it through a process called plastic injection molding which is explained in detail in the final paper. Kandi Society instilled a positive impact on ASU students by igniting a sustainability spark and increasing interest in repurposing materials in the future.

ContributorsConnolly, Payton (Author) / Guebara, Chloe (Co-author) / Grundhoffer, Andie (Co-author) / Maxwell, Olivia (Co-author) / Bia, Aleya (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We

For the honors thesis project, a group of five individuals collaborated to design and implement a sustainable business in the ASU community. Kandi Society is a rising jewelry brand whose top priorities include giving recycled plastic a new purpose, philanthropy, and making a welcoming, creative environment for our customers. We designed the Eco-Bead with 3D CAD modeling and produced it through a process called plastic injection molding which is explained in detail in the final paper. Kandi Society instilled a positive impact on ASU students by igniting a sustainability spark and increasing interest in repurposing materials in the future.

ContributorsGuebara, Chloe (Author) / Connolly, Payton (Co-author) / Maxwell, Olivia (Co-author) / Bia, Aleya (Co-author) / Grundhoffer, Andie (Co-author) / Byrne, Jared (Thesis director) / Swader, Melissa (Committee member) / Binch, Bill (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05