Matching Items (11)
Filtering by

Clear all filters

132802-Thumbnail Image.png
Description
This proposal lays out the business case for Isagenix International to adopt circular packaging that is compatible with the circular economy. I first give a brief background on plastic packaging and the environmental risks that go along with it. After explaining how a linear economy is unsustainable, I introduce the

This proposal lays out the business case for Isagenix International to adopt circular packaging that is compatible with the circular economy. I first give a brief background on plastic packaging and the environmental risks that go along with it. After explaining how a linear economy is unsustainable, I introduce the concept of a circular economy. I then explain the competitive advantages that Isagenix can gain over its competitors from pursuing circular or sustainable packaging, and provide a benchmarking analysis of other companies’ sustainable packaging goals. After establishing the reasons that Isagenix should pursue this initiative, I go into an explanation of how Isagenix should design packaging for circularity and educate consumers on how to recycle their packaging products. Lastly, I propose my three recommendations for action that Isagenix should start with to begin transitioning all of their packaging to be circular.
ContributorsPatel, Tanvi (Author) / Dooley, Kevin (Thesis director) / Cloutier, Scott (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
137095-Thumbnail Image.png
Description
There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233

There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233 and the thorium fuel cycle have failed to have significant presence in the field. Historically, nuclear energy development in the United States, and thorium development in particular, has been tied to the predominant societal outlook on the field, and thorium was only pursued seriously as an option during a period when nuclear energy was heavily favored, and resources seemed scarce. Recently, thorium-based energy has been experiencing a revival in interest in response to pollution concerns regarding fossil fuels. While public opinion is still wary of uranium, thorium-based designs could reduce reliance on fossil fuels while avoiding traditional drawbacks of nuclear energy. The thorium fuel cycle is more protected against proliferation, but is also much more expensive than the uranium-plutonium cycle in a typical reactor setup. Liquid-fueled molten salt reactor designs, however, bypass the prohibitive expense of U-233 refabrication by avoiding the stage entirely, keeping the chain reaction running with nothing but thorium input required. MSRs can use any fissile material as fuel, and are relatively safe to operate, due to passive features inherent to the design.
ContributorsGalbiati, Joseph Nicco (Author) / Martin, Thomas (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
134630-Thumbnail Image.png
Description
This paper seeks to analyze the relationship between energy subsidies on fossil fuels by countries and corresponding energy consumption, specifically electricity, by its citizens and occupants. The purpose of this was to determine whether pre-tax subsidies and post-tax subsidies have an effect on that consumption. This paper will discuss the

This paper seeks to analyze the relationship between energy subsidies on fossil fuels by countries and corresponding energy consumption, specifically electricity, by its citizens and occupants. The purpose of this was to determine whether pre-tax subsidies and post-tax subsidies have an effect on that consumption. This paper will discuss the prospect of accounting for post-tax subsidies as a method to curb rampant energy consumption throughout the world, with the focus being on residential electricity use. The two case studies, the Netherlands and Saudi Arabia, will illustrate the consumption patterns in relatively similar economic societies with different subsidy policies. Saudi Arabia will be a high pre-tax subsidy example while the Netherlands will be shown to account for some of the post-tax subsidies through an externality tax system. At the end of this analysis, this paper will show that the heavy subsidization of electricity production is strongly correlated to residential electricity consumption at levels that many officials would deem unsustainable, and that as such, subsidy reform is both beneficial and necessary.
ContributorsCorona, Kyle (Author) / Kelman, Jonathan (Thesis director) / Breetz, Hanna (Committee member) / School of Sustainability (Contributor, Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133048-Thumbnail Image.png
Description
As the sustainability issue of solid waste management magnifies worldwide, organizations are considering making their offices or operations Zero Waste, but many do not understand how or where to start. With the goal of contributing insights and advice to future designers and managers of Zero Waste programs, this thesis explores

As the sustainability issue of solid waste management magnifies worldwide, organizations are considering making their offices or operations Zero Waste, but many do not understand how or where to start. With the goal of contributing insights and advice to future designers and managers of Zero Waste programs, this thesis explores notable attributes of existing Zero Waste programs through case interviews and documents the researcher’s own journey in designing and executing a Zero Waste program at the Sprouts Farmers Market headquarters. The result is a detailed account that reveals how the Sprouts program was executed, how it could be improved, and which practices future Zero Waste program managers should use to maximize the success of their program. These practices include building personal and trusting relationships with the network of people involved; remaining flexible, patient and passionate; conducting thorough quantitative research on the proposed changes; and tailoring communication to effectively motivate behavior change.
ContributorsPowell, Emily Eva (Author) / Behravesh, Shirley-Ann (Thesis director) / Ferrin, Erika (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134802-Thumbnail Image.png
Description
Three dimensional printing is a growing field and an excellent medium for rapid prototyping. Its expansion has accelerated over recent years due to the increased affordability of the technology. It is now at the point where the startup cost to get into the field is down to the hobbyist price

Three dimensional printing is a growing field and an excellent medium for rapid prototyping. Its expansion has accelerated over recent years due to the increased affordability of the technology. It is now at the point where the startup cost to get into the field is down to the hobbyist price point. This means that there is an extremely high demand for affordable printing media. Current media such as ABS and PLA is extremely easy to form, but expensive and petroleum intensive to create. A recycling system that could work with a large variety of waste products could change the way that the maker community recycles. This Honors Thesis, or "Creative Project" will be centered on the product launch of small business 3DCycler. Although this launch will require pulling information and skills from various branches of both Business and Science, the scope of this project will be limited to specifically the market entrance of our small business/ product. Within this blanket goal, the project aims to define our target market/ its niche(s), develop proper IP/ lockout strategies, define future manufacturing strategies, and to fully define our beta product. The research was empirical in nature. Through data gathering techniques (e.g., consultations, interviews, survey), exploration was performed. Through these techniques the company 3DCycler took several calculated pivots in order to prepare the company for a strategic product launch and eventual acquisition.
ContributorsFarber-Schaefer, Blaine (Author) / Cho, Steve (Thesis director) / Goodman, Tom (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

Plastic pollution is undoubtedly one of the most pressing challenges facing humanity today. Significant action is required in order to properly address this rapidly growing threat. The Circular Economy provides a promising model for solution design in terms of responsible consumption and production. Countdown: Circular Economy Solutions is an organization

Plastic pollution is undoubtedly one of the most pressing challenges facing humanity today. Significant action is required in order to properly address this rapidly growing threat. The Circular Economy provides a promising model for solution design in terms of responsible consumption and production. Countdown: Circular Economy Solutions is an organization created by Jasmine Amoako-Agyei focused on addressing the threat of plastic pollution in the United States and Ghana, West Africa. The first part of this report will explain the severity of the global plastic pollution crisis and challenges with recycling. It will then present the Circular Economy as a viable model for a course of action. From there it will explain the efforts of Countdown: Circular Economy Solutions over the last two with a pathway forward. This venture leveraged the greater ASU ecosystem of resources such as Walton Sustainability Solutions, Precious Plastic ASU, the Luminosity Lab, Changemaker Central, Venture Devils, Engineering Projects in Community Service (ASU), Gary K. Herberger Young Scholars Academy, KNUST, and Ashesi D: Lab.

ContributorsAmoako-Agyei, Jasmine (Author) / Phelan, Pat (Thesis director) / Cho, Steve (Thesis director) / Loughman, Joshua (Committee member) / Barrett, The Honors College (Contributor) / Tech Entrepreneurship & Mgmt (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor)
Created2022-12
132293-Thumbnail Image.png
Description
Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and

Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and selectivity. Mixed matrix membranes (MMMs) containing two-dimensional (2D) metal-organic frameworks (MOFs) as fillers are a highly sought approach to redress this trade-off given their enhanced gas permeabilities and selectivities compared to the pure polymeric membrane. These MMMs are increasingly gaining attention by researchers due to their unique properties and wide small- and large-scale gas separation applications. However, straightforward and scalable methods for the synthesis of MOFs nanosheets have thus far been persistently elusive. This study reports the single-phase preparation, and characterization of MMMs with 2D MOFs nanosheets as fillers. The prepared MOF and the polymer matrix form the ‘dense’ MMMs which exhibit increased gas diffusion resistance, and thus improved separation abilities. The single-phase approach was more successful than the bi-phase at synthesizing the MOFs. The influence of sonication power and time on the characteristics and performance of the membranes are examined and discussed. Increasing the sonication power from 50% to 100% reduces the pore size. Additionally, the ultimate effect on the selectivity and permeance of the MMMs with different single gases is reported. Analysis of results with various gas mixers indicates further performance improvements in these MMMs could be achieved by increasing sonication time and tuning suitable membrane thicknesses. Reported results reveal that MMMs are excellent candidates for next-generation gas mixture separations, with potential applications in CO2 capture and storage, hydrogen recovery, alkene recovery from alkanes, and natural gas purification.
ContributorsNkuutu, John (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132700-Thumbnail Image.png
Description
Drilling in Section 1002 has been an ongoing debate since the region was designated as a potential area for drilling projects, pending congressional approval in 1980. In 2017, the area was officially opened up for oil and gas development through its passage in the GOP Tax Cuts and Jobs Act

Drilling in Section 1002 has been an ongoing debate since the region was designated as a potential area for drilling projects, pending congressional approval in 1980. In 2017, the area was officially opened up for oil and gas development through its passage in the GOP Tax Cuts and Jobs Act of 2017. This act requires 2 lease sales of 400,000 acres, with an allowed 2,000 acre physical footprint (not including pipelines, ice roads, or gravel mines). Using Social-Life Cycle Assessment methodology to assess the process of oil extraction in Section 1002, significant benefits and drawbacks of drilling in this region, with economic, cultural, and social impacts ranging from the local level to the state level to the national level were identified.

Stakeholders impacted by oil development in the Section 1002 region include the Kaktovik community who lives within the Program Area, the Gwich’in people who live south of ANWR, the corporations who will be leasing the land, as well as the employees who will be working on the projects. These stakeholders share similar values and interests, however, when it comes down to the attainment of these values, there are significant differences in opinion. This debate comes down specifically to the desire to ensure stability for one’s family and community, as this means 2 different things to the majority stakeholders on this issue: The Inupiaq and the Gwich’in. The Inupiaq ,who live in Kaktovik specifically ,are particularly keen on the idea of drilling in the Section 1002 region, because the revenues and opportunities that come with the oil and gas development provide access to better standards of living and a more westernized way of life. The Gwich’in, however, value their relationship to the land and the caribou that are at risk of significant change. These 2 groups are critical to the debate, but the state and federal governments have the final say, and a financial incentive to move forward with the lease sales.

Utilizing the S-LCA framework, life cycle impacts of drilling on society are found using indicators that are identified and assessed using both qualitative and quantitative means. Although some conclusions are uncertain due to the forward-looking nature of this S-LCA, the Increasing/Decreasing trends can be identified and confidently attributed to the specific indicators.

Significant Results:
Significant issues this study has highlighted include the resulting impacts, both positive and negative, on the communities affected by oil and gas development in Section 1002. Significant stakeholders include the Kaktovik community, the Gwich’in people, the oil and gas workers in the state of Alaska, and the oil and gas companies themselves. The local residents are the most affected by the impacts of development, with significant issues pertaining to potential for significant lifestyle change, the increased risk of impact on subsistence species, the risks associated with pollution, and the effect on the economy through revenues and job availability.
ContributorsJunglas, Hillary L (Author) / Pasqualetti, Martin (Thesis director) / Breetz, Hanna (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The algal fuel industry has existed since the 1980s without fully commercializing a product. Algal fuels are potentially viable replacements for fossil fuels due to their fast cultivation, high oil content, carbon dioxide sequestration during growth, and ability to be grown on non-arable land. For this thesis, six

The algal fuel industry has existed since the 1980s without fully commercializing a product. Algal fuels are potentially viable replacements for fossil fuels due to their fast cultivation, high oil content, carbon dioxide sequestration during growth, and ability to be grown on non-arable land. For this thesis, six companies from 61 investigated were interviewed about their history with biofuels, technological changes they have gone through, and views for the future of the industry. All companies interviewed have moved away from fuel production largely due to high production costs and have moved primarily toward pharmaceuticals and animal feed production as well as wastewater treatment. While most do not plan to return to the biofuel industry in the near future, a return would likely require additional legislation, increased technological innovation, and coproduction of multiple products.
ContributorsMassey, Alexandria Rae (Author) / Parker, Nathan (Thesis director) / Agusdinata, Buyung (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05