Matching Items (451)
Filtering by

Clear all filters

158587-Thumbnail Image.png
Description
This thesis aims to design of wings for a laminate biped robot for providing locomotion stabilization during jump gliding. The wings are designed to collapse down during the jumping phase to maximize jump height and deployed back for gliding phase using anisotropic buckling in tape spring hinges. The project aims

This thesis aims to design of wings for a laminate biped robot for providing locomotion stabilization during jump gliding. The wings are designed to collapse down during the jumping phase to maximize jump height and deployed back for gliding phase using anisotropic buckling in tape spring hinges. The project aims to develop a reliable dynamics model which can be utilized for design and evaluation of optimized systems for jump-gliding. The aerodynamic simulations are run on a vortex-lattice code which provides numeric simulations of the defined geometric bodies. The aerodynamic simulations assist in improving the design parameters such as planform, camber and twist to achieve the best possible Coefficient of Lift for maximizing glide distance. The aerodynamic simulation output is then plugged into a dynamics model built in Python, which is validated and correlated with experimental testing of a key wing designs. The experimental results are then utilized to improve the dynamics model and obtain better designs for improved performance. The simulation model informs the aerodynamic design of wings for sustaining glide for the biped platform and maximizing glide length to increase range.
ContributorsGadekar, Vipul (Author) / Takahashi, Timothy (Thesis advisor) / Aukes, Daniel (Thesis advisor) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020
158546-Thumbnail Image.png
Description
As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one

As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one route to mitigate this issue, these cooling methods add bulk, are time limited, and may not be applicable in locations without logistical support. Here I take inspiration from nature to guide the development of smart fabrics that have high breathability, but self-seal on exposure to target chemical(s), providing a better balance between cooling and protection.

Natural barrier materials were explored as a guide, focusing specifically on prickly pear cacti. These cacti have a natural waxy barrier that provides protection from dehydration and physically changes shape to modify surface wettability and water vapor transport. The results of this study provided a basis for a shape changing polymer to be used to respond directly to hazardous chemicals, swelling to contain the agent.

To create a stimuli responsive material, a novel superabsorbent polymer was synthesized, based on acrylamide chemistry. The polymer was tested for swelling properties in a wide range of organic liquids and found to highly swell in moderately polar organic liquids. To help predict swelling in untested liquids, the swelling of multiple test liquids were compared with their thermodynamic properties to observe trends. As the smart fabric needs to remain breathable to allow evaporative cooling, while retaining functionality when soaked with sweat, absorption of water, as well as that of an absorbing liquid in the presence of water were tested.

Micron sized particles of the developed polymer were deposited on a plastic mesh with pore size and open area similar to common clothing fabric to establish the proof of concept of using a breathable barrier to provide chemical protection. The polymer coated mesh showed minimal additional resistance to water vapor transport, relative to the mesh alone, but blocked more than 99% of a xylene aerosol from penetrating the barrier.
ContributorsManning, Kenneth (Author) / Rykaczewski, Konrad (Thesis advisor) / Burgin, Timothy (Committee member) / Emady, Heather (Committee member) / Green, Matthew (Committee member) / Thomas, Marylaura (Committee member) / Arizona State University (Publisher)
Created2020
158600-Thumbnail Image.png
Description
Solar energy as a limitless source of energy all around the globe has been difficult to harness. This is due to the low direct solar-electric conversion efficiency which has an upper limit set to the Shockley-Queisser limit. Solar thermophotovoltaics (STPV) is a much more efficient solar energy harvesting technology as

Solar energy as a limitless source of energy all around the globe has been difficult to harness. This is due to the low direct solar-electric conversion efficiency which has an upper limit set to the Shockley-Queisser limit. Solar thermophotovoltaics (STPV) is a much more efficient solar energy harvesting technology as it has the potential to overcome the Shockley-Queisser limit, by converting the broad-spectrum solar irradiation into narrowband infrared spectrum radiation matched to the PV cell. Despite the potential to surpass the Shockley-Queisser limit, very few experimental results have reported high system-level efficiency.

The objective of the thesis is to study the STPV conversion performance with selective metafilm absorber and emitter paired with a commercial GaSb cell at different solar concentrations. Absorber and Emitter metafilm thickness was optimized and fabricated. The optical properties of fabricated metafilms showed good agreement with the theoretically determined properties. The experimental setup was completed and validated by measuring the heat transfer rate across the test setup and comparing it with theoretical calculations. A novel method for maintaining the gap between the emitter and PV cell was developed using glass microspheres. Theoretical calculations show that the use of the glass of microspheres introduces negligible conduction loss across the gap compared to the radiation heat transfer, which is confirmed by experimental heat transfer measurement. This research work will help enhance the fundamental understanding and the development of the high-efficiency solar thermophotovoltaic system.
ContributorsNayal, Avinash (Author) / Wang, Liping (Thesis advisor) / Wang, Robert (Committee member) / Milcarek, Ryan (Committee member) / Arizona State University (Publisher)
Created2020
158494-Thumbnail Image.png
Description
The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in

The human ankle is a vital joint in the lower limb of the human body. As the point of interaction between the human neuromuscular system and the physical world, the ankle plays important role in lower extremity functions including postural balance and locomotion . Accurate characterization of ankle mechanics in lower extremity function is essential not just to advance the design and control of robots physically interacting with the human lower extremities but also in rehabilitation of humans suffering from neurodegenerative disorders.

In order to characterize the ankle mechanics and understand the underlying mechanisms that influence the neuromuscular properties of the ankle, a novel multi-axial robotic platform was developed. The robotic platform is capable of simulating various haptic environments and transiently perturbing the ankle to analyze the neuromechanics of the ankle, specifically the ankle impedance. Humans modulate ankle impedance to perform various tasks of the lower limb. The robotic platform is used to analyze the modulation of ankle impedance during postural balance and locomotion on various haptic environments. Further, various factors that influence modulation of ankle impedance were identified. Using the factors identified during environment dependent impedance modulation studies, the quantitative relationship between these factors, namely the muscle activation of major ankle muscles, the weight loading on ankle and the torque generation at the ankle was analyzed during postural balance and locomotion. A universal neuromuscular model of the ankle that quantitatively relates ankle stiffness, the major component of ankle impedance, to these factors was developed.

This neuromuscular model is then used as a basis to study the alterations caused in ankle behavior due to neurodegenerative disorders such as Multiple Sclerosis and Stroke. Pilot studies to validate the analysis of altered ankle behavior and demonstrate the effectiveness of robotic rehabilitation protocols in addressing the altered ankle behavior were performed. The pilot studies demonstrate that the altered ankle mechanics can be quantified in the affected populations and correlate with the observed adverse effects of the disability. Further, robotic rehabilitation protocols improve ankle control in affected populations as seen through functional improvements in postural balance and locomotion, validating the neuromuscular approach for rehabilitation.
ContributorsNalam, Varun (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Lockhart, Thurmon (Committee member) / Arizona State University (Publisher)
Created2020
158261-Thumbnail Image.png
Description
The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a

The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a newly developed technology, electricity is generated from the temperature gradient between building walls through a Seebeck effect. A 3D-printed triply periodic minimal surface (TPMS) structure is sandwiched in copper electrodes with copper (I) sulphate (Cu2SO4) electrolyte to mimic a thermogalvanic cell. Previous studies mainly concentrated on mechanical properties and the electric power generation ability of these structures; however, the goal of this study is to estimate the thermal resistance of the 3D-printed TPMS experimentally. This investigation elucidates their thermal resistances which in turn helps to appreciate the power output associated in the thermogalvanic structure. Schwarz P, Gyroid, IWP, and Split P geometries were considered for the experiment with electrolyte in the thermogalvanic brick. Among these TPMS structures, Split P was found more thermally resistive than the others with a thermal resistance of 0.012 m2 K W-1. The thermal resistances of Schwarz D and Gyroid structures were also assessed experimentally without electrolyte and the results are compared to numerical predictions in a previous Mater's thesis.
ContributorsDasinor, Emmanuel (Author) / Phelan, Patrick (Thesis advisor) / Milcarek, Ryan (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2020
158307-Thumbnail Image.png
Description
The focus of this dissertation is first on understanding the difficulties involved in constructing reduced order models of structures that exhibit a strong nonlinearity/strongly nonlinear events such as snap-through, buckling (local or global), mode switching, symmetry breaking. Next, based on this understanding, it is desired to modify/extend the current Nonlinear

The focus of this dissertation is first on understanding the difficulties involved in constructing reduced order models of structures that exhibit a strong nonlinearity/strongly nonlinear events such as snap-through, buckling (local or global), mode switching, symmetry breaking. Next, based on this understanding, it is desired to modify/extend the current Nonlinear Reduced Order Modeling (NLROM) methodology, basis selection and/or identification methodology, to obtain reliable reduced order models of these structures. Focusing on these goals, the work carried out addressed more specifically the following issues:

i) optimization of the basis to capture at best the response in the smallest number of modes,

ii) improved identification of the reduced order model stiffness coefficients,

iii) detection of strongly nonlinear events using NLROM.

For the first issue, an approach was proposed to rotate a limited number of linear modes to become more dominant in the response of the structure. This step was achieved through a proper orthogonal decomposition of the projection on these linear modes of a series of representative nonlinear displacements. This rotation does not expand the modal space but renders that part of the basis more efficient, the identification of stiffness coefficients more reliable, and the selection of dual modes more compact. In fact, a separate approach was also proposed for an independent optimization of the duals. Regarding the second issue, two tuning approaches of the stiffness coefficients were proposed to improve the identification of a limited set of critical coefficients based on independent response data of the structure. Both approaches led to a significant improvement of the static prediction for the clamped-clamped curved beam model. Extensive validations of the NLROMs based on the above novel approaches was carried out by comparisons with full finite element response data. The third issue, the detection of nonlinear events, was finally addressed by building connections between the eigenvalues of the finite element software (Nastran here) and NLROM tangent stiffness matrices and the occurrence of the ‘events’ which is further extended to the assessment of the accuracy with which the NLROM captures the full finite element behavior after the event has occurred.
ContributorsLin, Jinshan (Author) / Mignolet, Marc (Thesis advisor) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Spottswood, Stephen (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2020
158167-Thumbnail Image.png
Description
Presented in this thesis are two projects that fall under the umbrella of magnetically actuated electronics and robotics for medical applications. First, magnetically actuated tunable soft electronics are discussed in Chapter 2. Wearable and implantable soft electronics are clinically available and commonplace. However, these devices can be taken a ste

Presented in this thesis are two projects that fall under the umbrella of magnetically actuated electronics and robotics for medical applications. First, magnetically actuated tunable soft electronics are discussed in Chapter 2. Wearable and implantable soft electronics are clinically available and commonplace. However, these devices can be taken a step further to improve the lives of their users by adding remote tunability. The four electric units tested were planar inductors, axial inductors, capacitors and resistors. The devices were made of polydimethylsiloxane (PDMS) for flexibility with copper components for conductivity. The units were tuned using magnets and mobile components comprised of iron filings and ferrofluid. The characteristic properties examined for each unit are as follows: inductance and quality factor (Q-factor) for inductors, capacitance and Q-factor for capacitors, and impedance for resistors. There were two groups of tuning tests: quantity effect and position effect of the mobile component. The position of the mobile component had a larger effect on each unit, with 20-23% change in inductance for inductors (from 3.31 µH for planar and 0.44 µH for axial), 12.7% from 2.854 pF for capacitors and 185.3% from 0.353 kΩ for resistors.

Chapter 3 discusses a magnetic needle tracking device with operative assistance from a six degree-of-freedom robotic arm. Traditional needle steering faces many obstacles such as torsional effects, buckling, and small radii of curvature. To improve upon the concept, this project uses permanent magnets in parallel with a tracking system to steer and determine the position and orientation of the needle in real time. The magnet configuration is located at the end effector of the robotic arm. The trajectory of the end effector depends on the needle’s path, and vice versa. The distance the needle travels inside the workspace is tracked by a direct current (DC) motor, to which the needle is tethered. Combining this length with the pose of the end effector, the position and orientation of the needle can be calculated. Simulation of this tracking device has shown the functionality of the system. Testing has been done to confirm that a single magnet pulls the needle through the phantom tissue.
ContributorsEdwards, Dakota (Author) / Marvi, Hamidreza (Thesis advisor) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2020
158169-Thumbnail Image.png
Description
Needle steering is an extension of manually inserted needles that allows for maneuverability within the body in order to avoid anatomical obstacles and correct for undesired placement errors. Research into needle steering predominantly exploits interaction forces between a beveled tip and the medium, controlling the direction of forces by

Needle steering is an extension of manually inserted needles that allows for maneuverability within the body in order to avoid anatomical obstacles and correct for undesired placement errors. Research into needle steering predominantly exploits interaction forces between a beveled tip and the medium, controlling the direction of forces by applying rotations at the base of the needle shaft in order to steer. These systems are either manually or robotically advanced, but have not achieved clinical relevance due to a multitude of limitations including compression effects in the shaft that cause undesired tissue slicing, torsional friction forces and deflection at tissue boundaries that create control difficulties, and a physical design that inherently restricts the workspace. While most improvements into these systems attempt to innovate the needle design or create tissue models to better understand interaction forces, this paper discusses a promising alternative: magnetic needle steering. Chapter 2 discusses an electromagnetic needle steering system that overcomes all aforementioned issues with traditional steering. The electromagnetic system advances the needle entirely magnetically so it does not encounter any compression or torsion effects, it can steer across tissue-interfaces at various angles of attack (90, 45, 22.5°) with root-mean-square error (RMSE) of 1.2 mm, achieve various radii of curvature as low as 10.2 mm with RMSE of 1.4 mm, and steer along complex 3D paths with RMSE as low as 0.4 mm. Although these results do effectively prove the viability of magnetic steering, the electromagnetic system is limited by a weak magnetic field and small 33mm cubic workspace. In order to overcome these limitations, the use of permanent magnets, which can achieve magnetic forces an order of magnitude larger than similarly sized electromagnetics, is investigated. The needle will be steered toward a permanent magnet configuration that is controlled by a 6 degree-of-freedom robotic manipulator. Three magnet configurations were investigated, two novel ideas that attempt to create local maximum points that stabilize the needle relative to the configuration, and one that pulls the needle toward a single magnet. Ultimately, the last design was found to be most viable to demonstrate the effectiveness of magnetic needle steering.
ContributorsPetras, Alex (Author) / Marvi, Hamidreza (Thesis advisor) / Yong, Sze Z. (Committee member) / Ross, Heather M. (Committee member) / Arizona State University (Publisher)
Created2020
158364-Thumbnail Image.png
Description
Current exosuit technologies utilizing soft inflatable actuators for gait assistance have drawbacks of having slow dynamics and limited portability. The first part of this thesis focuses on addressing the aforementioned issues by using inflatable actuator composites (IAC) and a portable pneumatic source. Design, fabrication and finite element modeling of the

Current exosuit technologies utilizing soft inflatable actuators for gait assistance have drawbacks of having slow dynamics and limited portability. The first part of this thesis focuses on addressing the aforementioned issues by using inflatable actuator composites (IAC) and a portable pneumatic source. Design, fabrication and finite element modeling of the IAC are presented. Volume optimization of the IAC is done by varying its internal volume using finite element methods. A portable air source for use in pneumatically actuated wearable devices is also presented. Evaluation of the system is carried out by analyzing its maximum pressure and flow output. Electro-pneumatic setup, design and fabrication of the developed air source are also shown. To provide assistance to the user using the exosuit in appropriate gait phases, a gait detection system is needed. In the second part of this thesis, a gait sensing system utilizing soft fabric based inflatable sensors embedded in a silicone based shoe insole is developed. Design, fabrication and mechanical characterization of the soft gait detection sensors are given. In addition, integration of the sensors, each capable of measuring loads of 700N in a silicone based shoe insole is also shown along with its possible application in detection of various gait phases. Finally, a possible integration of the actuators, air source and gait detection shoes in making of a portable soft exosuit for knee assistance is given.
Contributorspoddar, souvik (Author) / Zhang, Wenlong (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020
158375-Thumbnail Image.png
Description
AA 7XXX alloys are used extensively in aircraft and naval structures due to their excellent strength to weight ratio. These alloys are often exposed to harsh corrosive environments and mechanical stresses that can compromise their reliability in service. They are also coupled with fasteners that are composed of different materials

AA 7XXX alloys are used extensively in aircraft and naval structures due to their excellent strength to weight ratio. These alloys are often exposed to harsh corrosive environments and mechanical stresses that can compromise their reliability in service. They are also coupled with fasteners that are composed of different materials such as Titanium alloys. Such dissimilar metal contact facilitates galvanic and crevice corrosion, which can further reduce their lifetimes. Despite decades of research in the area, the confluence of mechanical, microstructural, and electrochemical aspects of damage is still unclear. Traditionally, 2D and destructive methods have often been employed to study the corrosion and cracking behavior in these systems which can be severely limiting and lead to inaccurate conclusions. This dissertation is aimed at comprehensively studying the corrosion and cracking behavior of these systems using time-dependent 3D microstructural characterization, as well as correlative microscopy. The microstructural evolution of corrosion in AA 7075 was studied using a combination of potentiodynamic polarization, X-ray Computed Tomography (XCT) and Transmission X-ray Microscopy (TXM). In both experiments, a strong emphasis was placed on studying localized corrosion attack at constituent particles and intergranular corrosion. With an understanding of the alloy’s corrosion behavior, a dissimilar alloy couple comprising AA 7075 / Ti-6Al-4V was then investigated. Ex situ and in situ x-ray microtomography was used extensively to investigate the evolution of pitting corrosion and corrosion fatigue in AA 7075 plates fastened separately with Ti-6Al-4V screws and rivets. The 4D tomography combined with the extensive fractography yielded valuable information pertaining the preferred sites of pit initiation, crack initiation and growth in these complex geometries. The use of correlative microscopy-based methodologies yielded multimodal characterization results that provided a unique and seminal insight on corrosion mechanisms in these materials.
ContributorsNiverty, Sridhar (Author) / Chawla, Nikhilesh (Thesis advisor) / Liu, Yongming (Committee member) / Ankit, Kumar (Committee member) / Xiao, Xianghui (Committee member) / Arizona State University (Publisher)
Created2020