Matching Items (24)
Filtering by

Clear all filters

156897-Thumbnail Image.png
Description
The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting

The water and wastewater industry in the United States is in dire need of renovation due to dwindling infrastructure and requires substantial reinvestment. Design-bid-build (DBB) is the traditional method of project delivery most widely applied in this industry. However, alternative project delivery methods (APDM) are on the rise and touting the benefits of reduced project schedule and cost. The main purpose of this study is to conduct a qualitative and quantitative performance evaluation to assess the current impact of APDM in the water and wastewater industry. A national survey was conducted targeting completed water and wastewater treatment plant projects. Responses were obtained from 75 utilities and constructors that either completed their projects using DBB, construction manager at risk (CMAR), or design-build (DB). Data analysis revealed that CMAR and DB statistically outperformed DBB in terms of project speed and intensity. Performance metrics such as cost growth, schedule growth, unit cost, factors influencing project delivery method selection, scope changes, warranty and latent defects, and several others are also evaluated. The main contribution of this study was that it was able to show that for the same project cost, water and wastewater treatment plants could be delivered under a faster schedule and with higher quality through the utilization of APDM.
ContributorsFeghaly, Jeffrey (Author) / El Asmar, Mounir (Thesis advisor) / Ariaratnam, Samuel (Thesis advisor) / Bearup, Wylie (Committee member) / Arizona State University (Publisher)
Created2018
157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
134315-Thumbnail Image.png
Description
Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived

Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived as being interchangeable. This paper evaluates Sustainable Materials Management (SMM) and Circular Economy (CE) individually and in comparison to see how truly different these frameworks are from one another. This comparison is then extended into a theoretical walk-through of an SMM treatment of concrete pavement in contrast with a CE treatment. With concrete being a ubiquitous in the world's buildings and roads, as well as being a major constituent of Construction & Demolition waste generated, its analysis is applicable to a significant portion of the world's material flow. The ultimate test of differentiation between SMM and CE would ask: 1) If SMM principles guided action, would the outcomes be aligned with or at odds with CE principles? and conversely 2) If CE principles guided action, would the outcomes be aligned with or at odds with SMM principles? Using concrete pavement as an example, this paper seeks to determine whether or not Sustainable Materials Management and Circular Economy are simply different roads leading to the same destination.
ContributorsAbdul-Quadir, Anisa (Author) / Kelman, Candice (Thesis director) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
133865-Thumbnail Image.png
Description
As construction and building methods advance so should their focus on reconstruction post-natural disasters. For the past 50 years there has been an average of 6.2 hurricanes making landfall, and several recent unfortunate occurrences in the past year that have caused immeasurable damage and taken priceless lives (Chris Landsea 2017).

As construction and building methods advance so should their focus on reconstruction post-natural disasters. For the past 50 years there has been an average of 6.2 hurricanes making landfall, and several recent unfortunate occurrences in the past year that have caused immeasurable damage and taken priceless lives (Chris Landsea 2017). Damages could have been significantly reduced to residential homes and lives saved if proper, hurricane-resistant construction was used. It is important to continue advancement in efficient planning and reconstructive methods to restore individuals into their homes and ensure their safety in the future. Utilizing tested resilient building methods may increase construction costs but has a visible payoff through mitigation of economic losses in the future. This can also help develop response and mitigation plans based on the very specific conditions of each community or affected location. To do so, it is crucial to continue research and test various methods of construction and materials in residential homes. This study was a comparative analysis of the current roof systems implemented in residential homes, the role of hurricane testing facilities in maintaining building codes, and how damage incurred by hurricanes can be significantly reduced through a shift in the approach of homeowner insurance incentive. The purpose of this study was to provide a feasible and practicable solution for increasing implementation of hurricane resistant construction into homes. The results of this analysis concluded that there is a low percentage of homeowners investing in making their homes hurricane resilient. By re-inventing the incentive methods that insurance companies offer, this problem can step into the right direction in making more homes hurricane resilient consequently reducing damages, deaths, and economic loss.
ContributorsVarkalaite, Migle (Author) / Sullivan, Kenneth (Thesis director) / Ayer, Steven (Committee member) / School of International Letters and Cultures (Contributor) / Del E. Webb Construction (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136945-Thumbnail Image.png
Description
This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often

This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often cited as one of the most important statistics when making budget decisions. Many academic programs are ill-equipped to perform this task, however, as their personnel are not trained as recruiters, but rather as professors and industry professionals; furthermore, the university-level recruitment staff faces the impossible task of advertising every department's recruitment message. The Del E. Webb School of Construction has embarked upon a journey to create industry-based marketing materials to aid them in their recruitment efforts. Construction management (CM) has traditionally been viewed as a technology major relegated to vocational students and those not fit for baccalaureate programs. In recent years that perception has changed, however, as the industry has become increasingly complex and CM programs actively work to recruit students. In an attempt to increase that recruitment, the Del E. Webb School has created marketing materials that are signature to the program featuring the world's most widely-used building material, concrete, to create a keepsake for prospective students. This keepsake comes in the form of concrete replicas of the new ASU Pitchfork logo. These pitchforks are small and designed to be mass produced so that they can be handed out at recruitment events either on campus or in local schools. The Del E. Webb School had previously experimented with flexible rubber molds and flowable mixtures, such that the models could be easily cast and rapidly demolded and reset for casting. There were issues, however, as those pitchforks did not meet desired level of quality and were difficult to reproduce. This thesis thus describes an experimental program examining different casting and demolding regimens in an attempt to find the optimal way to create the pitchforks on a consistent basis. Following this, an operations manual for how to create the pitchforks was created in order to ensure that successive cohorts of construction students can reproduce the pitchforks in preparation for the School's annual recruitment events.
ContributorsErnzen, John Alexander (Author) / Wiezel, Avi (Thesis director) / Rogers, James (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134614-Thumbnail Image.png
Description
The construction industry is inefficient. Technological advancements alone do not provide a full solution. By simplifying the complexity of a construction project, and implementing the views of IMT (Information Measurement Theory) through a value driven system, the construction industry can be improved. In Bechtel's recent film, Dream Big: Engineering our

The construction industry is inefficient. Technological advancements alone do not provide a full solution. By simplifying the complexity of a construction project, and implementing the views of IMT (Information Measurement Theory) through a value driven system, the construction industry can be improved. In Bechtel's recent film, Dream Big: Engineering our World, the integration of their company values on emerging engineers resulted in astounding solutions towards making the future of the construction industry more efficient as a whole. This thesis demonstrates how Bechtel was able to direct the Dream Big movement with an emphasis on leadership and simpler thinking of future generations. Under the direction of Dr. Kashiwagi's Research and Solution Model (KSM) it is possible for young people aware of their potential and understand "simplicity" to be effective leaders. Through observation, these new leaders understand that they have been making a difference since their birth. As individuals are able to identify their core values, they are better able to find their strengths, align their values with a company, and ultimately make the construction industry more efficient.
ContributorsPirkl, Amber Victoria (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Del E. Webb Construction (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134597-Thumbnail Image.png
Description
Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for

Hospitals constitute 9 percent of commercial energy consumption in the U.S. annually, though they only make up 2 percent of the U.S. commercial floor space. Consuming an average of 259,000 Btu per square foot, U.S. hospitals spend about 8.3 billion dollars on energy every year. Utilizing collaborative delivery method for hospital construction can effectively save healthcare business owners thousands of dollars while reducing construction time and resulting in a better product: a building that has fewer operational deficiencies and requires less maintenance. Healthcare systems are integrated by nature, and are rich in technical complexity to meet the needs of their various patients. In addition to being technologically and energy intensive, hospitals must meet health regulations while maintaining human comfort. The interdisciplinary nature of hospitals suggests that multiple perspectives would be valuable in optimizing the building design. Integrated project delivery provides a means to reaching the optimal design by emphasizing group collaboration and expertise of the architect, engineer, owner, builder, and hospital staff. In previous studies, IPD has proven to be particularly beneficial when it comes to highly complex projects, such as hospitals. To assess the effects of a high level of team collaboration in the delivery of a hospital, case studies were prepared on several hospitals that have been built in the past decade. The case studies each utilized some form of a collaborative delivery method, and each were successful in saving and/or redirecting time and money to other building components, achieving various certifications, recognitions, and awards, and satisfying the client. The purpose of this research is to determine key strategies in the construction of healthcare facilities that allow for quicker construction, greater monetary savings, and improved operational efficiency. This research aims to communicate the value of both "green building" and a high level of team collaboration in the hospital-building process.
ContributorsHansen, Hannah Elizabeth (Author) / Parrish, Kristen (Thesis director) / Bryan, Harvey (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154579-Thumbnail Image.png
Description
Entering a new market in the construction industry is a complex task. Although many contractors have experienced the benefits of expanding their market offerings, many more have had unsuccessful experiences causing hardship for the entire organization. Standardized decision-making processes can help to increase the likelihood of success, but

Entering a new market in the construction industry is a complex task. Although many contractors have experienced the benefits of expanding their market offerings, many more have had unsuccessful experiences causing hardship for the entire organization. Standardized decision-making processes can help to increase the likelihood of success, but few specialty contractors have taken the time to develop a formal procedure. According to this research, only 6 percent of survey respondents and 7 percent of case study participants from the sheet metal industry have a formal decision process. Five sources of data (existing literature, industry survey, semi-structured interviews, factor prioritization workshops, and expert panel discussions) are consulted to understand the current market entry decision-making practices and needs of the sheet metal industry. The data help to accomplish three study objectives: (1) determine the current processes and best practices used for market entry decision-making in the sheet metal industry, (2) identify motivations leading to market entry by sheet metal contractors, and (3) develop a standardized decision process that improves market entry decision outcomes. Grounded in a firm understanding of industry practices, a three-phased decision-making framework is created to provide a structured approach to guide contractors to an informed decision. Four industry leaders with over 175 years of experience in construction reviewed and applied every step of the framework to ensure it is practical and easy to use for contractors.
ContributorsSullivan, Jera J (Author) / El Asmar, Mounir (Thesis advisor) / Gibson, G Edward (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2016
Description

The environment today is facing concerns over accumulation of plastics in landfills as well as excessive CO2 emissions. Containers and packaging take up approximately 15 million tons each year, and accumulations such as the Great Pacific Garbage Patch are entering the oceans. Work has been done to alter and treat

The environment today is facing concerns over accumulation of plastics in landfills as well as excessive CO2 emissions. Containers and packaging take up approximately 15 million tons each year, and accumulations such as the Great Pacific Garbage Patch are entering the oceans. Work has been done to alter and treat polyethylene plastic to be added to cement mixtures. This is done to increase bearing capacity and ductility of concrete in addition to decreasing carbon emissions and plastic waste.

ContributorsWestersund, Susanna (Author) / Hoover, Christian (Thesis director) / Soman, Silpa (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2023-05
Description

This thesis investigates the feasibility of using recycled ceramics as the aggregate in concrete, as an alternative to natural rock aggregates. The study evaluates the mechanical properties of concrete made with recycled ceramics and compares them with those of traditional concrete. The research involved laboratory experiments to determine compressive strength

This thesis investigates the feasibility of using recycled ceramics as the aggregate in concrete, as an alternative to natural rock aggregates. The study evaluates the mechanical properties of concrete made with recycled ceramics and compares them with those of traditional concrete. The research involved laboratory experiments to determine compressive strength and displacement. The results show that the concrete made with recycled ceramics exhibited higher compressive strength and lower maximum displacement than traditional concrete, which means it acted more brittle. However, when the recycled ceramics were used to replace only 50% of the rock aggregate, the compressive strength decreased while the maximum displacement stayed the same, though the study concludes that a larger sample size is needed for more reliable results. Based on the findings, the thesis concludes that while the use of recycled ceramics in concrete may not be suitable for structural concrete, it could still have potential as a sustainable building material in non-structural applications.

ContributorsLong, Mason (Author) / Hoover, Christian (Thesis director) / Pazhankave, Silpa (Committee member) / Barrett, The Honors College (Contributor) / Civil, Environmental and Sustainable Eng Program (Contributor)
Created2023-05