Matching Items (10)
Filtering by

Clear all filters

135551-Thumbnail Image.png
Description
In this study, the packaging and labeling of milk and coffee was compared between Walmart and Sprouts. The pricing, the sourcing, the certifications and the overall shelf presence of the items was taken under consideration. After studying the packaging of both, a new design incorporating the applicable labels, customer appeal

In this study, the packaging and labeling of milk and coffee was compared between Walmart and Sprouts. The pricing, the sourcing, the certifications and the overall shelf presence of the items was taken under consideration. After studying the packaging of both, a new design incorporating the applicable labels, customer appeal and appropriate green marketing was created for both the commodities.
ContributorsBhatt, Rashi Hitesh (Author) / Collins, Shari (Thesis director) / Keahey, Jennifer (Committee member) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134315-Thumbnail Image.png
Description
Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived

Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived as being interchangeable. This paper evaluates Sustainable Materials Management (SMM) and Circular Economy (CE) individually and in comparison to see how truly different these frameworks are from one another. This comparison is then extended into a theoretical walk-through of an SMM treatment of concrete pavement in contrast with a CE treatment. With concrete being a ubiquitous in the world's buildings and roads, as well as being a major constituent of Construction & Demolition waste generated, its analysis is applicable to a significant portion of the world's material flow. The ultimate test of differentiation between SMM and CE would ask: 1) If SMM principles guided action, would the outcomes be aligned with or at odds with CE principles? and conversely 2) If CE principles guided action, would the outcomes be aligned with or at odds with SMM principles? Using concrete pavement as an example, this paper seeks to determine whether or not Sustainable Materials Management and Circular Economy are simply different roads leading to the same destination.
ContributorsAbdul-Quadir, Anisa (Author) / Kelman, Candice (Thesis director) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
136656-Thumbnail Image.png
Description
The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing

The objective for Under the Camper Shell was to build a prototype of a full living environment within the confines of a pickup truck bed and camper shell. The total volume available to work with is approximately 85ft3. This full living environment entails functioning systems for essential modern living, providing shelter and spaces for cooking, sleeping, eating, and sanitation. The project proved to be very challenging from the start. First, the livable space is extremely small, being only tall enough for one to sit up straight. The truck and camper shell were both borrowed items, so no modifications were allowed for either, e.g. drilling holes for mounting. The idea was to create a system that could be easily removed, transforming it from a camper to a utility truck. The systems developed for the living environment would be modular and transformative so to accommodate for different necessities when packing. The goal was to create a low-water system with sustainability in mind. Insulating the space was the largest challenge and the most rewarding, using body heat to warm the space and insulate from the elements. Comfort systems were made of high density foam cushions in sections to allow folding and stacking for different functions (sleeping, lounging, and sitting). Sanitation is necessary for healthy living and regular human function. A composting toilet was used for the design, lending to low-water usage and is sustainable over time. Saw dust would be necessary for its function, but upon composting, the unit will generate sufficient amounts of heat to act as a space heater. Showering serves the functions of exfoliation and ridding of bacteria, both of which bath wipes can accomplish, limiting massive volumes of water storage and waste. Storage systems were also designed for modularity. Hooks were installed the length of the bed for hanging or securing items as necessary. Some are available for hanging bags. A cabinetry rail also runs the length of the bed to allow movement of hard storage to accommodate different scenarios. The cooking method is called "sous-vide", a method of cooking food in air-tight bags submerged in hot water. The water is reusable for cooking and no dishes are necessary for serving. Overall, the prototype fulfilled its function as a full living environment with few improvements necessary for future use.
ContributorsLimsirichai, Pimwadee (Author) / Foy, Joseph (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-12
136809-Thumbnail Image.png
Description
FLARE is a concept developed to aid efficiency and effectiveness of Search and Rescue. It is a wearable technology device that encompasses GPS capabilities, backup offline locating capabilities, 2-way text communication via satellite, and other various features suited for outdoors. It is intended for both Search and Rescue as well

FLARE is a concept developed to aid efficiency and effectiveness of Search and Rescue. It is a wearable technology device that encompasses GPS capabilities, backup offline locating capabilities, 2-way text communication via satellite, and other various features suited for outdoors. It is intended for both Search and Rescue as well as recreational outdoor enthusiasts, with same hardware, but different software.
ContributorsKawski, Anna Simone (Author) / McDermott, Lauren (Thesis director) / Dhadphale, Tejas (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2014-05
136812-Thumbnail Image.png
Description
Now dry and broken, the Salt River once supplied a great legacy of Riparian vegetation through the Sonoran desert. This verdant landscape flourished from perennial flows of a river fed by high mountain snowmelt. However, multiple dams within those mountain canyons and channelization for the purpose of flood protection have

Now dry and broken, the Salt River once supplied a great legacy of Riparian vegetation through the Sonoran desert. This verdant landscape flourished from perennial flows of a river fed by high mountain snowmelt. However, multiple dams within those mountain canyons and channelization for the purpose of flood protection have nearly dried up the Salt. Through the process of design I examined the potential to repair, restore, and redevelop the river, choosing a site within the reach of the Salt River that currently includes an artificial retention area called Tempe Town Lake. Since 1999 a two mile portion of the river channel has contained the reservoir for the purpose of recreation and development within the city of Tempe. As I investigated the viability of restoring an urban desert river to a more natural riparian condition, I developed a master plan that merges ecological river restoration with sustainable urban development. Research into the vegetative communities historically occurring along the river's edge guided me to create a project based in ecological principles. Expanding the concrete channel to a wider river presence followed examples set by case studies and the historic character of the Salt River. A new braided low flow channel, allowed to meander with the natural currents of the river, is terraced upwards in a gentle slope that maintains current 500-year flow plains. The vegetation communities I propose to establish along the new terraced elevations are adapted from Charles H. Lowe's profile of a foothill canyon and archival research specific to this portion of the Salt River. As a way to support the reintroduction of Arizona's lost riparian plant communities, the master plan incorporates the use of greywater and A/C condensate collection from proposed developments along the river's edge. These new water systems would be substantial enough to sustain riparian vegetation creation and in addition, provide for ground water recharge. Additional developments continue the City of Tempe's goal to expand development along the river and adjacent to the downtown core. Providing for increased recreational opportunity in a river setting improves the quality of life in Tempe and sets the community apart from surrounding desert cities. By applying ecological and sustainable design and planning principles, the Salt River Diaries master plan repairs the river's flow, restores the riparian vegetation, and redevelops the edge between the city and river.
ContributorsBruckner, Coby Ryan (Author) / Fish Ewan, Rebecca (Thesis director) / Cook, Edward (Committee member) / Sykes, Astrid (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2014-05
132802-Thumbnail Image.png
Description
This proposal lays out the business case for Isagenix International to adopt circular packaging that is compatible with the circular economy. I first give a brief background on plastic packaging and the environmental risks that go along with it. After explaining how a linear economy is unsustainable, I introduce the

This proposal lays out the business case for Isagenix International to adopt circular packaging that is compatible with the circular economy. I first give a brief background on plastic packaging and the environmental risks that go along with it. After explaining how a linear economy is unsustainable, I introduce the concept of a circular economy. I then explain the competitive advantages that Isagenix can gain over its competitors from pursuing circular or sustainable packaging, and provide a benchmarking analysis of other companies’ sustainable packaging goals. After establishing the reasons that Isagenix should pursue this initiative, I go into an explanation of how Isagenix should design packaging for circularity and educate consumers on how to recycle their packaging products. Lastly, I propose my three recommendations for action that Isagenix should start with to begin transitioning all of their packaging to be circular.
ContributorsPatel, Tanvi (Author) / Dooley, Kevin (Thesis director) / Cloutier, Scott (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131831-Thumbnail Image.png
Description
Asthma is one of the most common chronic conditions in the United States, being diagnosed in over 20 million Americans. The condition is even more common among young children, and their academic performance and ability to attend school can be negatively impacted by poorly-managed asthma. Digital therapeutics are therapeutic interventions

Asthma is one of the most common chronic conditions in the United States, being diagnosed in over 20 million Americans. The condition is even more common among young children, and their academic performance and ability to attend school can be negatively impacted by poorly-managed asthma. Digital therapeutics are therapeutic interventions driven by high quality software programs to prevent, manage, or treat a medical disorder or disease. Technology in the healthcare space is rapidly improving, and smart devices are becoming more common everyday. How can digital therapeutics and evolving technology be implemented to make life easier for those that suffer from asthma and chronic obstructive pulmonary disease? My research seeks to answer the overarching question: How might we improve the day-to-day experience of children with asthma? Airie is a system of devices and products that educate both asthmatic children and their parents about the condition, facilitate self-monitoring and asthma management skills, and improve overall quality of life.
ContributorsChen, Jane Jialin (Author) / Shin, Dosun (Thesis director) / Feil, Magnus (Committee member) / The Design School (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
“STEAM = Science & Technology interpreted through
Engineering & the Arts, all based in Mathematical elements” (STEAM edu, 2015).
“The latest round of international standardized test results showed American students are lagging behind the rest of the developed world not just in math, science and reading, but in problem solving as well.

“STEAM = Science & Technology interpreted through
Engineering & the Arts, all based in Mathematical elements” (STEAM edu, 2015).
“The latest round of international standardized test results showed American students are lagging behind the rest of the developed world not just in math, science and reading, but in problem solving as well. The 2012 Program for International Student Assessment (PISA) test examined 44 countries’ students’ problem-solving abilities — American students landed just above the average, but they still scored below many other developed countries, including Britain, Singapore, Korea, Japan, China and Canada” (Bertram, 2015).
Lack of quality education, busy households, and limited time and money can all be factors of why children are not academically supported. What would it look like if children had access to a tool that helped them catch up if they fall behind? A tool that empowers children to solve academic and real-world world problems will help strengthen different cognitive and behavioral skills as well as create a more personalized educational experience, inside the classroom and out. This tool can be applied to the way we look at our formal academic education to help build new, creative problem solving strategies that are tailored to each student’s preferred ways of learning.

Proposed Research

My research is driven by the following question:

How do we create a tool for students that will help them maneuver busy and over-populated classrooms to help them learn better?

I am interested in studying the ways in which children in the age range of 11-14 play, specifically through video gaming, and using this influence to promote learning. By using children’s gaming interests to inspire education, they will be more inclined to participate in learning activities in the classroom. By exploring and observing how children problem solve in gaming, I will be able to pull techniques and methods from play in order to enhance critical learning. This project will begin in mid-May, and will continue after my thesis defense when I take this project into the workforce and am applying for jobs.
Methods
I will be taking a mixed methods approach to my research by using a combination of:
Qualitative methods: Observational data will be collected in many ways including but not limited to sketches, photography, writing, and film. After gathering base-level observational data I plan to use this, as well as my prototypes from the early phases of my product’s life to create a study to better understand users’ preferences with my product. This will include different colors, ergonomic shapes, part lines, and more to allow for a large range of feedback.
Surveys and interviews: I wish to interview and survey policymakers, educators, students, and other stakeholders invested in education to better understand their needs, in order to ensure that my product is feasible in the eyes of policymakers. It is important that my specific product not only serve as a tool for students, but also for teachers to learn as well. Making this product as something practical and scalable is important in terms of feasibility.
Thematic groups: Observing user groups interacting with my product/project will help me adjust to my general end goals.

Actionable Insights

After gathering data from interviews, surveys, observations, and product feedback, I plan to analyze this data and make sufficient changes to my project in order to better serve the community in which I am trying to benefit. Doing this will help my project be more effective and impactful.

Limitations will depend on rules on photography and interviewing. The timeline of the analysis of the data collected will be similar to the timeline provided for the senior studio class for traditional industrial design students.
Expected Outcomes
The proposed research will strengthen my design skills and expand my knowledge as a design student interested in the user experience, wellbeing, access to arts education, and much more. I will have a final outcome of a physical product that will be used as an initiative to help children studying STEM subjects to find new, creative, and different ways of solving problems.
Timeline
As I will be doing this project in congruency with my senior industrial design studio, my schedule has been roughly predetermined.
April-August
Literature review and preliminary research will be taken care of during this part of my thesis project. I will also be contacting people I would like to see be involved in this project during this time.
August-December
Research
1. Exploration
a. Assign01: Mind map + Visit the world
b. Assign02: Observations + Interviews
2. Making sense of the data + Concepts
a. Assign03: POG + Ideation
b. Assign04: Concept Evaluation + Selection
c. Partner School Determined
3. Concept Direction + Customer Validation + Research Summary
a. Assign05: Hard device and Screen Mock-ups + Customer Feedback
b. Assign06: Mid-term presentation of research + Life-Cycle
Design
1. Form Development + Drivers
a. Assign07: Design Language + Out into the World
b. Assign08: Product Details + Function
c. Wire frames Due
2. Study Models + CAD Model
a. Assign09: Refined 3D Study Model
b. Assign10: CAD Model + Tech Drawings
c. Running Step-Through
3. Design Validation + Refinement
a. Assign11: Persona Check +CMF + Features & Benefits
4. Storyboard Development + Visual Poster
a. Assign12: Storyboard + Life of Product
b. Assign13: Poster + Presentation Outline
c. Assign14: Product Animation
5. Final Presentation
a. Assign15: Process Book
b. Assign16: Public presentation
December-January
This is the time I will use to have my code built out a bit more. I will come back into the next semester with a code that functions in my form that I have decided on.
January-May
This time will be used to run user tests on my product, and make desired changes to it in order to fully iterate and design my concept well and with data-driven desires.
Meetings
I plan to meet with my studio professor, Dosun Shin, once every two weeks to discuss how my project is progressing. My second committee member will be Dean Bacalzo. My committee will be contacted on a monthly basis by way of email with updates on my project’s process. From there I will be able to ask for suggestions and schedule meeting times to further discuss my project.
























References
Educational Ecosystems for Societal Transformation

Why STEM? Success Starts With Critical Thinking, Problem-Solving Skills
https://www.wired.com/insights/2014/06/stem-success-starts-critical-thinking-problem-solving-skills/
Unlocking Creativity: Teaching across the Curriculum

How the Founder of All Girls Code Is Shaking Up STEM in the Middle East
https://www.jnj.com/personal-stories/the-road-to-devex-aya-mouallem-discusses-her-stem-program-for-girls

Case Study: A game for conflict-affected youth to learn and grow
https://blogs.unity3d.com/2018/06/13/case-study-a-game-for-conflict-affected-youth-to-learn-and-grow/

Vice Charter School vs Public School
https://www.theatlantic.com/science/archive/2016/10/the-weak-evidence-behind-brain-training-games/502559/

Think brain games make you smarter? Think again, FSU researchers sayhttp:/
ews.fsu.edu
ews/health-medicine/2017/04/17/think-brain-games-make-smarter-think-fsu-researchers-say/
About STEAM Edu
https://steamedu.com/about-us/
Brain Games Don’t Work
http://fortune.com/2017/07/10/brain-games-research-lumosity/

Pip is a portable gaming device that teaches children to codehttps://www.dezeen.com/2017/12/05/pip-portable-gaming-device-teaches-children-coding-technology/
Latest STEM learning kits for kids combine technology and play doughhttps://www.dezeen.com/2017/06/06/stem-learning-kits-kids-combine-technology-play-dough-universe-tech-will-save-us-design/
3 Ways To Design Toys That Boost Kids’ Creativityhttps://www.fastcodesign.com/1669691/3-ways-to-design-toys-that-boost-kids-creativity
Plobot for STEAM
https://www.behance.net/gallery/45476023/Plobot

Global Education Futures Report
http://futuref.org/educationfutures
Xbox Adaptive Controllerhttps://www.xbox.com/en-US/xbox-one/accessories/controllers/xbox-adaptive-controller
2018 US Video Game Market Predictionshttps://www.npd.com/wps/portal
pd/us/blog/2018/2018-us-video-game-market-predictions/
Kids and Violence in the Media
https://www.parenting.com/article/media-violence-children
YouTubers Talk About Their Favorite Games
https://www.youtube.com/watch?v=D3wFuqzzwdk

https://www.ideo.com/case-study/giving-ed-tech-entrepreneurs-a-window-into-the-classroom
https://www.ideo.com/case-study/for-kids-a-new-tactile-way-to-learn-coding
https://www.youtube.com/watch?v=uwskPyYEH2I&feature=youtu.be
https://www.kerbalspaceprogram.com/en/?page_id=11
ContributorsStrasser, Grace Bailey (Author) / Wilkymacky, Abby (Thesis director) / Shin, Dosun (Committee member) / School of Sustainability (Contributor) / The Design School (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130892-Thumbnail Image.png
Description
Over the past decades, rare earth elements (REE) have become a crucial backbone to the functioning of modern technology infrastructure, particularly due to their inclusion within NdFeB magnets which power technologies such as hard disk drives and wind turbines. However, mining and extraction of REEs pose significant environmental and human

Over the past decades, rare earth elements (REE) have become a crucial backbone to the functioning of modern technology infrastructure, particularly due to their inclusion within NdFeB magnets which power technologies such as hard disk drives and wind turbines. However, mining and extraction of REEs pose significant environmental and human health risks, thus signaling a need for more sustainable methods of sourcing. This research aims to compare the impact and effectiveness of three recycling processes for decommissioned NdFeB magnets sourced from end-of-life wind turbines, as well as consider strategies for developing these processes on an industrial scale. A material flow analysis (MFA) has been conducted to determine comparable input and output factors for two types of laboratory-scale recycling methods, molten salt electrolysis and hydrometallurgy, and one industrial-scale method, magnet-to-magnet. Following this, an impact analysis of potential industrial level magnet recycling operations for molten salt electrolysis and hydrometallurgy was conducted. The results show that molten salt electrolysis had the highest levels of impact for global warming, ozone depletion, and energy usage of the three methods when scaled on an industrial level. Hydrometallurgy had relatively low energy usage and emissions impacts but required large amounts of water and produced high levels of wastewater. The magnet-to-magnet process showed promising impact results in comparison with the alternate two methods, but further development needs to be done to circumvent the continued use of virgin REE in the final production steps for novel magnets. Overall, it is recommended that locations of recycling operations should be pursued for each process relative to energy and water usage needs, as well as transportation distance from wind farms.
ContributorsSavel, Cassandra Deanne (Author) / Agusdinata, Datu Buyung (Thesis director) / Iloeje, Nwike (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
Description

Plastic pollution is undoubtedly one of the most pressing challenges facing humanity today. Significant action is required in order to properly address this rapidly growing threat. The Circular Economy provides a promising model for solution design in terms of responsible consumption and production. Countdown: Circular Economy Solutions is an organization

Plastic pollution is undoubtedly one of the most pressing challenges facing humanity today. Significant action is required in order to properly address this rapidly growing threat. The Circular Economy provides a promising model for solution design in terms of responsible consumption and production. Countdown: Circular Economy Solutions is an organization created by Jasmine Amoako-Agyei focused on addressing the threat of plastic pollution in the United States and Ghana, West Africa. The first part of this report will explain the severity of the global plastic pollution crisis and challenges with recycling. It will then present the Circular Economy as a viable model for a course of action. From there it will explain the efforts of Countdown: Circular Economy Solutions over the last two with a pathway forward. This venture leveraged the greater ASU ecosystem of resources such as Walton Sustainability Solutions, Precious Plastic ASU, the Luminosity Lab, Changemaker Central, Venture Devils, Engineering Projects in Community Service (ASU), Gary K. Herberger Young Scholars Academy, KNUST, and Ashesi D: Lab.

ContributorsAmoako-Agyei, Jasmine (Author) / Phelan, Pat (Thesis director) / Cho, Steve (Thesis director) / Loughman, Joshua (Committee member) / Barrett, The Honors College (Contributor) / Tech Entrepreneurship & Mgmt (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor)
Created2022-12