Matching Items (22)

Filtering by

Clear all filters

126659-Thumbnail Image.png

Institutionalizing Urban Resilience: Coordination Strategies within 19 North American City Governments

Description

City governments are increasingly interested in the concept of urban resilience. While theoretical debates continue to develop and critique the value of ‘urban resilience,’ a growing number of cities are organizing policies and projects around the concept. Building urban resilience

City governments are increasingly interested in the concept of urban resilience. While theoretical debates continue to develop and critique the value of ‘urban resilience,’ a growing number of cities are organizing policies and projects around the concept. Building urban resilience is viewed as a key concern for cities facing, in particular, climatic threats –although other urban challenges and equity concerns are increasingly prioritized. Support from city leadership and large funding opportunities, such as the Rockefeller Foundation’s 100 Resilient Cities program, have encouraged some leading cities to create and manage city-wide resilience strategies. Yet pioneering cities have few guideposts to institutionalize resilience. This research evolved out of conversations with city officials in Portland, OR who were interested to learn how other cities were organizing resilience work. We explore how urban resilience is being structured and coordinated in 19 North American cities, focusing on emerging definitions, organizational structures, internal and external coordination efforts, and practitioners’ insights. We situate our findings on emerging governance approaches and lessons learned within the current urban resilience literature on governance by reviewing 40 academic papers and identifying 6 recurrent factors for effective governance. Additionally, we conducted 19 semi-structured interviews with North American resilience practitioners to describe emerging organization trends and share lessons from practice. Based off our interviews, we propose 5 key findings for structuring resilience work in cities effectively. These include: establishing a clear, contextual definition and scope, bringing communities into the process, championing the agreed-upon vision, balancing a centralized and dispersed approach, and recognizing tradeoffs in organizational placement. This research provides practitioners with insights to help facilitate resilience work within their cities and contributed to the scholarly debate on moving resilience theory toward implementation.

Contributors

Agent

Created

Date Created
2019-04-25

An Exploration of Communicating Sustainability Ideas Through Technology to Inspire Sustainable Urban Planning Practice

Description

This report describes the process by which I created a concise but comprehensive online source of information about best practices in sustainability for urban planners. The goal of the project was to provide accessible information that would help planners in

This report describes the process by which I created a concise but comprehensive online source of information about best practices in sustainability for urban planners. The goal of the project was to provide accessible information that would help planners in ways that help them comprehend and implement sustainable solutions to common planning problems that are found throughout the United States. To create the website, I researched methods for communicating clearly to planners, took a graduate course in communicating about sustainability, and drew on information that I had compiled on sustainable solutions for transportation, economy, water, green space, and governance.

Contributors

Agent

Created

Date Created
2017-12-01

Contento Recycling: The Evolution of Sustainability

Description

While the term sustainability is commonly used in 2019, in 1950, it was sparsely uttered. To understand how Contento Recycling LLC became Central New York’s leader in sustainable development, you must go back to Gerald Contento Sr, and the year

While the term sustainability is commonly used in 2019, in 1950, it was sparsely uttered. To understand how Contento Recycling LLC became Central New York’s leader in sustainable development, you must go back to Gerald Contento Sr, and the year 1950. This was the year my grandfather started our family’s vehicle dismantling and scrap metal recycling business. Over the course of the next 70 years, Contento’s and now, Contento Recycling, has evolved into a leader in recycling and environmental work in Central New York. To see how I created a sustainable business enterprise, you must analyze my family’s past. My family’s history provides a roadmap to a more sustainable future.
When I established Contento Recycling LLC in 2017, it was poised to be Central New York’s first ever construction and demolition debris recycling business. I was tasked with the challenge that many sustainability professionals are tasked with and that was to show the community why they should stop taking their construction debris to the landfill, and instead bring it to my recycling center for processing, recycling, and landfill diversion. Over the last several years I applied for state grant funding, spread awareness about my new business, designed and constructed a material recovery facility, outfitted equipment, and trained staff. I now have a facility that accepts about 40 tons of mixed C&D debris per day, and diverts about 20% of that from the landfill.
On a more personal level, I learned a tremendous amount about dealing with change management. I’ve learned a lot about business development, and some keys to success when building a business. I’ve figured out how to help my employees and customers grow. I’ve learned to be more patient and flexible with my business endeavors. I have a much clearer vision of what I want for my business and for myself. I have developed a rousing optimism on the impact that my business, and myself can have on the sustainable development of Central New York. I will be a leader in environmental stewardship and partner with other people and organizations who want to work towards a more sustainable future.

Contributors

Agent

Created

Date Created
2019-05-15

141020-Thumbnail Image.png

Apache Junction Trail Connectivity State Land and Visioning Final Report

Description

In the spring of 2016, The City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental

In the spring of 2016, The City of Apache Junction partnered with the School of Geographical Sciences and Urban Planning at Arizona State University on three forward-thinking plans for development in Apache Junction. Graduate students in the Urban and Environmental Planning program worked alongside City staff, elected officials and the public to identify opportunities and visions for:

1. Multi-modal access and connectivity improvements for City streets and open space.
2. Downtown development.
3. A master-planned community on state land south of the U.S. 60.

The following sections of the report present Apache Junction’s unique characteristics, current resident demographics, development needs and implementation strategies for each project:

1. Community Profile
2. Trail Connectivity Master Plan
3. Downtown Visioning
4. State Land Visioning

The Trail Connectivity Master Plan optimizes existing trails and wide road shoulders to improve multi-modal connections across the city. The proposed connections emphasize access to important recreation, education and other community facilities for pedestrians, equestrians and bicycles. Trail and lane designs recommend vegetated buffers, wherever possible, to improve traveler safety and comfort. The proposals also increase residents’ interaction with open space along urban-rural trails and park linkages to preserve opportunities to engage with nature. The objectives of the report are accomplished through three goals: connectivity, safety improvements and open space preservation.

Downtown Visioning builds on a large body of conceptual design work for Apache Junction’s downtown area along Idaho Road and Apache Trail. This report identifies three goals: to establish a town center, reestablish the grid systems while maintaining a view of the Superstition Mountains, and create an identity and sense of place for the downtown.

State Land Visioning addresses a tract of land, approximately 25 square miles in area, south of the U.S. 60. The main objective is to facilitate growth and proper development in accordance with existing goals in Apache Junction’s General Plan. This is accomplished through three goals:

1. Develop a foundation for the creation of an economic corridor along US-60 through preliminary market research and land use planning.
2. Create multi-modal connections between existing development north of US-60 and future recreational space northeast of US-60.
3. Maintain a large ratio of open space to developed area that encompasses existing washes and floodplains using a master planned community framework to provide an example for future land use planning.

Contributors

Agent

Created

Date Created
2016-05

141400-Thumbnail Image.png

Desert New Urbanism: Testing for Comfort in Downtown Tempe, Arizona

Description

Outdoor human comfort is determined for the remodelled downtown of Tempe, Arizona, USA, an acclaimed example of New Urbanist infill. The authors desired to know whether changes were accompanied by more comfortable conditions, especially in hot, dry summer months. The

Outdoor human comfort is determined for the remodelled downtown of Tempe, Arizona, USA, an acclaimed example of New Urbanist infill. The authors desired to know whether changes were accompanied by more comfortable conditions, especially in hot, dry summer months. The physiological equivalent temperature provided an assessment of year-round outdoor human comfort. Building compactness and tree shade that became part of the changes in the downtown provided more overall daytime human comfort than open nearby streets; however some downtown sites were less comfortable at night, but below 40°C, a threshold for human comfort in this desert environment.

Contributors

Agent

Created

Date Created
2016-06-01

141401-Thumbnail Image.png

Observing and Modeling the Nocturnal Park Cool Island of an Arid City: Horizontal and Vertical Impacts

Description

We examined the horizontal and vertical nocturnal cooling influence of a small park with irrigated lawn and xeric surfaces (∼3 ha) within a university campus of a hot arid city. Temperature data from 0.01- to 3-m heights observed during a

We examined the horizontal and vertical nocturnal cooling influence of a small park with irrigated lawn and xeric surfaces (∼3 ha) within a university campus of a hot arid city. Temperature data from 0.01- to 3-m heights observed during a bicycle traverse of the campus were combined with modeled spatial temperature data simulated from a three-dimensional microclimate model (ENVI-met 3.1). A distinct park cool island, with mean observed magnitudes of 0.7–3.6°C, was documented for both traverse and model data with larger cooling intensities measured closer to surface level. Modeled results possessed varying but generally reasonable accuracy in simulating both spatial and temporal temperature data, although some systematic errors exist. A combination of several factors, such as variations in surface thermal properties, urban geometry, building orientation, and soil moisture, was likely responsible for influencing differential urban and non-urban near-surface temperatures. A strong inversion layer up to 1 m over non-urban surfaces was detected, contrasting with near-neutral lapse rates over urban surfaces. A key factor in the spatial expansion of the park cool island was the advection of cooler park air to adjacent urban surfaces, although this effect was mostly concentrated from 0- to 1-m heights over urban surfaces that were more exposed to the atmosphere.

Contributors

Agent

Created

Date Created
2010-05-21

141404-Thumbnail Image.png

Reductions in Air Conditioning Energy Caused by a Nearby Park

Description

Field observations were carried out to determine the influence of a park on the urban summer climate in the nearby areas. The possibilities of reduction in air conditioning energy were investigated. Air temperature, relative humidity and other meteorological factors were

Field observations were carried out to determine the influence of a park on the urban summer climate in the nearby areas. The possibilities of reduction in air conditioning energy were investigated. Air temperature, relative humidity and other meteorological factors were measured at many locations inside a park and in the surrounding areas in the Tama New Town, a city in the west of the Tokyo Metropolitan Area, Japan. The observations indicated that vegetation could significantly alter the climate in the town. At noon, the highest temperature of the ground surface of the grass field in the park was 40.3 °C, which was 19 °C lower than that of the asphalt surface or 15 °C lower than that of the concrete surface in the parking or commercial areas. At the same time, air temperature measured at 1.2 m above the ground at the grass field inside the park was more than 2 °C lower than that measured at the same height in the surrounding commercial and parking areas. Soon after sunset, the temperature of the ground surface at the grass field in the park became lower than that of the air, and the park became a cool island whereas paved asphalt or concrete surfaces in the town remained hotter than the overlying air even late at night. With a size of about 0.6 km2, at noon, the park can reduce by up to 1.5 °C the air temperature in a busy commercial area 1 km downwind. This can lead to a significant decrease of in air conditioning energy in the commercial area.

Contributors

Agent

Created

Date Created
1998-05-27

141378-Thumbnail Image.png

Planning for Cooler Cities: A Framework to Prioritize Green Infrastructure to Mitigate High Temperatures in Urban Landscapes

Description

Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in

Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in urban areas while delivering diverse additional benefits such as pollution reduction and biodiversity habitat. Although the greatest thermal benefits of UGI are achieved in climates with hot, dry summers, there is comparatively little information available for land managers to determine an appropriate strategy for UGI implementation under these climatic conditions. We present a framework for prioritisation and selection of UGI for cooling. The framework is supported by a review of the scientific literature examining the relationships between urban geometry, UGI and temperature mitigation which we used to develop guidelines for UGI implementation that maximises urban surface temperature cooling. We focus particularly on quantifying the cooling benefits of four types of UGI: green open spaces (primarily public parks), shade trees, green roofs, and vertical greening systems (green walls and facades) and demonstrate how the framework can be applied using a case study from Melbourne, Australia.

Contributors

Created

Date Created
2014-11-11

141381-Thumbnail Image.png

Impact of Urban Form and Design on Mid-Afternoon Microclimate in Phoenix Local Climate Zones

Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

Contributors

Agent

Created

Date Created
2013-12-01

141377-Thumbnail Image.png

Coupling Biogeochemical Cycles in Urban Environments: Ecosystem Services, Green Solutions, and Misconceptions

Description

Urban green space is purported to offset greenhouse‐gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem‐services‐based “green infrastructure” in urban environments.

Urban green space is purported to offset greenhouse‐gas (GHG) emissions, remove air and water pollutants, cool local climate, and improve public health. To use these services, municipalities have focused efforts on designing and implementing ecosystem‐services‐based “green infrastructure” in urban environments. In some cases the environmental benefits of this infrastructure have been well documented, but they are often unclear, unquantified, and/or outweighed by potential costs. Quantifying biogeochemical processes in urban green infrastructure can improve our understanding of urban ecosystem services and disservices (negative or unintended consequences) resulting from designed urban green spaces. Here we propose a framework to integrate biogeochemical processes into designing, implementing, and evaluating the net effectiveness of green infrastructure, and provide examples for GHG mitigation, stormwater runoff mitigation, and improvements in air quality and health.

Contributors

Created

Date Created
2011-02-01