Matching Items (4)
Filtering by

Clear all filters

157200-Thumbnail Image.png
Description

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy”

The built environment is responsible for a significant portion of global waste generation.

Construction and demolition (C&D) waste requires significant landfill areas and costs

billions of dollars. New business models that reduce this waste may prove to be financially

beneficial and generally more sustainable. One such model is referred to as the “Circular

Economy” (CE), which promotes the efficient use of materials to minimize waste

generation and raw material consumption. CE is achieved by maximizing the life of

materials and components and by reclaiming the typically wasted value at the end of their

life. This thesis identifies the potential opportunities for using CE in the built environment.

It first calculates the magnitude of C&D waste and its main streams, highlights the top

C&D materials based on weight and value using data from various regions, identifies the

top C&D materials’ current recycling and reuse rates, and finally estimates a potential

financial benefit of $3.7 billion from redirecting C&D waste using the CE concept in the

United States.

ContributorsAldaaja, Mohammad (Author) / El Asmar, Mounir (Thesis advisor) / Buch, Rajesh (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2019
157056-Thumbnail Image.png
Description
Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success

Planning efforts conducted during the early stages of a construction project, known

as front end planning (FEP), have a large impact on project success and significant

influence on the configuration of the final project. As a key component of FEP, front end

engineering design (FEED) plays an essential role in the overall success of large industrial

projects. The primary objective of this dissertation focuses on FEED maturity and accuracy

and its impact on project performance. The author was a member of the Construction

Industry Institute (CII) Research Team (RT) 331, which was tasked to develop the FEED

Maturity and Accuracy Total Rating System (FEED MATRS), pronounced “feed matters.”

This dissertation provides the motivation, methodology, data analysis, research findings

(which include significant correlations between the maturity and accuracy of FEED and

project performance), applicability and contributions to academia and industry. A scientific

research methodology was employed in this dissertation that included a literature review,

focus groups, an industry survey, data collection workshops, in-progress projects testing,

and statistical analysis of project performance. The results presented in this dissertation are

based on input from 128 experts in 57 organizations and a data sample of 33 completed

and 11 on-going large industrial projects representing over $13.9 billion of total installed

cost. The contributions of this work include: (1) developing a tested FEED definition for

the large industrial projects sector, (2) determining the industry’s state of practice for

measuring FEED deliverables, (3) developing an objective and scalable two-dimensional

method to measure FEED maturity and accuracy, and (4) quantifying that projects with

high FEED maturity and accuracy outperformed projects with low FEED maturity and

accuracy by 24 percent in terms of cost growth, in relation to the approved budget.
ContributorsYussef, Abdulrahman (Author) / Gibson, Jr., G. Edward (Thesis advisor) / El Asmar, Mounir (Thesis advisor) / Bearup, Wylie (Committee member) / Wiezel, Avi (Committee member) / Arizona State University (Publisher)
Created2019
134315-Thumbnail Image.png
Description
Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived

Sustainable Materials Management and Circular Economy are both frameworks for considering the way we interact with the world's resources. Different organizations and institutions across the world have adopted one philosophy or the other. To some, there seems to be little overlap of the two, and to others, they are perceived as being interchangeable. This paper evaluates Sustainable Materials Management (SMM) and Circular Economy (CE) individually and in comparison to see how truly different these frameworks are from one another. This comparison is then extended into a theoretical walk-through of an SMM treatment of concrete pavement in contrast with a CE treatment. With concrete being a ubiquitous in the world's buildings and roads, as well as being a major constituent of Construction & Demolition waste generated, its analysis is applicable to a significant portion of the world's material flow. The ultimate test of differentiation between SMM and CE would ask: 1) If SMM principles guided action, would the outcomes be aligned with or at odds with CE principles? and conversely 2) If CE principles guided action, would the outcomes be aligned with or at odds with SMM principles? Using concrete pavement as an example, this paper seeks to determine whether or not Sustainable Materials Management and Circular Economy are simply different roads leading to the same destination.
ContributorsAbdul-Quadir, Anisa (Author) / Kelman, Candice (Thesis director) / Buch, Rajesh (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
171823-Thumbnail Image.png
Description
An Earned Value Management System (EVMS) is an organization’s system for project/program management that integrates a defined set of associated work scopes, schedules and budgets, allowing for effective planning, performance, and management control. A mature EVMS that is compliant with standards and guidelines, and that is applied in a positive

An Earned Value Management System (EVMS) is an organization’s system for project/program management that integrates a defined set of associated work scopes, schedules and budgets, allowing for effective planning, performance, and management control. A mature EVMS that is compliant with standards and guidelines, and that is applied in a positive social environment is critical to the overall success of large and complex projects and programs. However, a comprehensive and up-to-date literature review revealed a lack of a data-driven and consistent rating system that can gauge the maturity and the environment surrounding EVMS implementation. Therefore, the primary objective of this dissertation focuses on the EVMS maturity and environment, and investigates their impact on project performance. The author was one of the 41 research team members whose goal was to develop the novel rating system called Integrated Project/Program Management (IP2M) Maturity and Environment Total Risk Rating (METRR). Using a multi-method research approach, the rating system was developed based on a literature review of more than 600 references, a survey with 294 responses, focus group meetings, and research charrettes with more than 100 subject matter experts from the industry. Performance data from 35 completed projects and programs representing over $21.8 billion in total cost was collected and analyzed. The data analysis showed that the projects with high EVMS maturity and good EVMS environment outperformed those with low maturity and poor environment in key project performance measures. The contributions of this work includes: (1) developing definitions for EVM, EVMS and other research related terms, (2) determining the gaps in the EVMS literature, (3) determining the EVMS state of the practice in the industry, (4) developing a scalable rating system to measure the EVMS maturity and environment, (5) providing quantified evidence on the impact of EVMS maturity and environment on project performance, and (6) providing guidance to practitioners to gauge their EVMS maturity and environment for an enhanced project and program management integration and performance.
ContributorsAramali, Vartenie Mardiros (Author) / Gibson Jr., George Edward (Thesis advisor) / El Asmar, Mounir (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2022