Matching Items (3)
Filtering by

Clear all filters

Description
To date, it has been difficult to elucidate the role of tau in learning and memory during adulthood due to developmental compensation of other microtubule associated proteins in Tau knockout (KO) mice. Here, we generated an adeno-associated virus (AAV) expressing a doxycycline (doxy)-inducible short-hairpin (sh) RNA targeted to tau, and

To date, it has been difficult to elucidate the role of tau in learning and memory during adulthood due to developmental compensation of other microtubule associated proteins in Tau knockout (KO) mice. Here, we generated an adeno-associated virus (AAV) expressing a doxycycline (doxy)-inducible short-hairpin (sh) RNA targeted to tau, and stereotaxically and bilaterally injected 7-month-old C57BL/6 mice with either the AAV-shRNAtau or an AAV expressing a scramble shRNA sequence. Seven days after the injections, all animals were administered doxy for thirty-five days to induce expression of shRNAs, after which they were tested in the open field, rotarod and Morris water maze (MWM) to assess anxiety like behavior, motor coordination and spatial reference memory, respectively. Our results show that reducing tau in the adult hippocampus produces significant impairments in motor coordination, endurance and spatial memory. Tissue analyses shows that tau knockdown reduces hippocampal dendritic spine density and the levels of BDNF and synaptophysin, two proteins involved in memory formation and plasticity. Our approach circumvents the developmental compensation issues observed in Tau KO models and shows that reducing tau levels during adulthood impairs cognition.
ContributorsTran, An Le (Author) / Oddo, Salvatore (Thesis director) / Velazquez, Ramon (Committee member) / Roberson, Erik (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133771-Thumbnail Image.png
Description
Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how

Urbanization rapidly alters the environment, leading to a decrease in biodiversity in urban areas. A challenge associated with urbanized areas is the increased heat caused by the urban heat island effect. Heat may have an important impact on arthropods particularly due to their status as ectotherms. Animal behavior reveals how individuals interact with their environment. A behavioral syndrome describes consistent individual differences in behaviors that are correlated across different behavioral contexts or situations. Understanding the Western Black Widow's behavioral responses to the urban heat island effect has important implications for the control of a pest species. In this study, the relationship between rising urban temperatures and voracity, web-building, and cannibalism behaviors of juvenile Western Black Widows was examined. Spiders raised in the urban temperature treatment were predicted to have more aggressive behavioral syndromes, characterized by shorter latencies to forage, greater web-building activity, and shorter latencies to cannibalize as compared to spiders raised in rural or intermediate temperature treatments. A correlation between the latency to attack the first fly and second fly was found, however there were no other correlations evidencing a behavioral syndrome. Temperature was found to affect foraging, web-building, and cannibalism behaviors where spiders in urban areas demonstrated increased activity in all behavioral contexts. The possession of behavioral plasticity rather than a behavioral syndrome is likely what allows Black Widows to be successful urban pests.
ContributorsGarver, Emily Elizabeth (Author) / Johnson, James Chadwick (Thesis director) / Foltz-Sweat, Jennifer (Committee member) / Kitchen, Kathryn (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131267-Thumbnail Image.png
Description
Dementia is a collective term used to describe symptoms of cognitive impairment in learning and memory. The most prevalent form of dementia is Alzheimer’s disease (AD). In order to understand the pathological mechanisms associated with AD, animal models have been created. These various mouse models replicate the pathology found in

Dementia is a collective term used to describe symptoms of cognitive impairment in learning and memory. The most prevalent form of dementia is Alzheimer’s disease (AD). In order to understand the pathological mechanisms associated with AD, animal models have been created. These various mouse models replicate the pathology found in humans with AD. As a consequence of the fact that this disease impairs cognitive abilities in humans, testing apparatuses have been developed to measure impaired cognition in animal models. One of the most common behavioral apparatuses that has been in use for nearly 40 years is the Morris water maze (MWM). In the MWM, animals are tasked to find a hidden platform in a pool of water and thereby are subjected to stress that can unpredictably influence cognitive performance. In an attempt to circumvent such issues, the IntelliCage was designed to remove the external stress of the human experimenter and provide a social environment during task assessment which is fully automated and programable. Additionally, the motivation is water consumption, which is less stressful than escaping a pool. This study examined the difference in performance of male and female cohorts of APP/PS1 and non-transgenic (NonTg) mice in both the MWM and the IntelliCage. Initially, 12-month-old male and female APP/PS1 and NonTg mice were tested in the hippocampal-dependent MWM maze for five days. Next, animals were moved to the IntelliCage and underwent 39 days of testing to assess prefrontal cortical and hippocampal function. The results of this experiment showed significant sex differences in task performance, but inconsistency between the two testing paradigms. Notably, males performed significantly better in the MWM, which is consistent with prior research. Interestingly however, APP/PS1 females showed higher Amyloid-β plaque load and performed significantly better in the more complex tasks of the IntelliCage. This suggests that Aβ plaque load may not directly contribute to cognitive deficits, which is consistent with recent reports in humans with AD. Collectively, these results should inform scientists about the caveats of behavioral paradigms and will aid in determining translation to the human condition.
ContributorsMifflin, Marc Anthony (Author) / Velazquez, Ramon (Thesis director) / Mastroeni, Diego (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05