Matching Items (1)
Filtering by

Clear all filters

134978-Thumbnail Image.png
Description
As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate

As inhabitants of a desert, a sustainable water source has always been and will continue to be a crucial component in developing the cities Arizonans call home. Phoenix and the surrounding municipalities make up a large metropolitan area that continues to grow in spatial size and population. However, as climate change becomes more of an evident challenge, Arizona is forced to plan and make decisions regarding its ability to safely and efficiently maintain its livelihood and/or growth. With the effects of climate change in mind, Arizona will need to continue to innovatively and proactively address issues of water management and the effects of urban heat island (UHI). The objective of this thesis was to study the socioeconomic impacts of four extreme scenarios of the future Phoenix metropolitan area. Each of the scenarios showcased a different hypothetical extreme and uniquely impacted factors related to water management and UHI. The four scenarios were a green city, desert city, expanded city into desert land, and expanded city into agricultural land. These four scenarios were designed to emphasize different aspects of the urban water-energy-population nexus, as the future of the Phoenix metropolitan area is dynamic. Primarily, the Green City and Desert City served as contrasting viewpoints on UHI and water sustainability. The Expanded Cities showed the influence of population growth and land use on water sustainability. The socioeconomic impacts of the four scenarios were then analyzed. The quantitative data of the report was completed using the online user interface of WaterSim 5.0 (a program created by the Decision Center for a Desert City (DCDC) at Arizona State University). The different scenarios were modeled in the program by adjusting various demand and supply oriented factors. The qualitative portion as well as additional quantitative data was acquired through an extensive literature review. It was found that changing land use has direct water use implications; agricultural land overtaken for municipal uses can sustain a population for longer. Though, removing agricultural lands has both social and economic implications, and can actually cause the elimination of an emergency source. Moreover, it was found that outdoor water use and reclaimed wastewater can impact water sustainability. Practices that decrease outdoor water use and increase wastewater reclamation are currently occurring; however, these practices could be augmented. Both practices require changes in the publics' opinions on water use, nevertheless, the technology and policy exists and can be intensified to become more water sustainable. While the scenarios studied were hypothetical cases of the future of the Phoenix metropolitan area, they identified important circumscribing measures and practices that influence the Valley's water resources.
ContributorsVon Gnechten, Rachel Marie (Author) / Wang, Zhihua (Thesis director) / White, Dave (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12