Matching Items (4)
Filtering by

Clear all filters

165869-Thumbnail Image.png
Description

In arid environments such as Arizona, agricultural producers are burdened by constraints placed on them by inhospitable weather and limited access to water and fertile soil when attempting to grow produce. Farms in the arid Southwest often have to build greenhouses to overcome such constraints; however, such greenhouses may be

In arid environments such as Arizona, agricultural producers are burdened by constraints placed on them by inhospitable weather and limited access to water and fertile soil when attempting to grow produce. Farms in the arid Southwest often have to build greenhouses to overcome such constraints; however, such greenhouses may be relatively space, water, and pesticide intensive and often have demanding maintenance needs and overhead costs. In addition, many current agricultural practices exhaust land resources disparagingly, leading to irreversible environmental degradation. In an effort to improve agricultural production for those limited by weather and resource constraints while simultaneously increasing sustainability in land, resource and pesticide use, we have created Valleyponics, a hydroponic growth services company centered around creating a minimal farming footprint. The company uses a consultative services approach, leveraging NASA Veggie Growth System Technology to provide solutions to large businesses by automating their agricultural production processes and minimizing resource use year-round. Valleyponics aims to cultivate consultative partnerships which will allow our clients, their communities, and the environment to flourish.

ContributorsValesano, Megan (Author) / Craft, Josh (Co-author) / Walsh, Samuel (Co-author) / Ramirez, Noe (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Management and Entrepreneurship (Contributor)
Created2022-05
Description
The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the engagement in in-depth interviews with professionals that work in the growing, distribution, and processing of leafy greens. Food safety in the leafy green industry is growing in importance in the wake of costly outbreaks that resulted and recalls and lasting market damage. The Dendritic Identifier provides a unique identification tag that is unclonable, scannable, and compatible with blockchain systems. It is a digital trigger that can be implemented throughout the commercial leafy green supply chain to increase visibility from farm to fork for the consumer and a traceability system for government agencies to trace outbreaks. Efforts like the Food Safety Modernization Act, the Leafy Green Marketing Agreement, and other certifications aim at establishing science-based standards regarding soil testing, water, animal feces, imports, and more. The leafy green supply chains are fragmented in terms of tagging methods and data management services used. There are obstacles in implementing Dendritic Identifiers in that all parties must have systems capable of joining blockchain networks. While there is still a lot to take into consideration for implementation, solutions like the IBM Food Trust pose options for a more fluid transfer of information. Dendritic Identifiers beat out competing tagging technologies in that they work with cellphones, are low cost, and are blockchain compatible. Growers and processors are excited by the opportunity to showcase their extensive food safety measures. The next step in understanding the use environment is to focus on the retail distribution and the retailer specifically.
ContributorsMin, Eleanor (Author) / Manfredo, Mark (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor)
Created2022-05
165223-Thumbnail Image.png
Description

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the engagement in in-depth interviews with professionals that work in the growing, distribution, and processing of leafy greens. Food safety in the leafy green industry is growing in importance in the wake of costly outbreaks that resulted and recalls and lasting market damage. The Dendritic Identifier provides a unique identification tag that is unclonable, scannable, and compatible with blockchain systems. It is a digital trigger that can be implemented throughout the commercial leafy green supply chain to increase visibility from farm to fork for the consumer and a traceability system for government agencies to trace outbreaks. Efforts like the Food Safety Modernization Act, the Leafy Green Marketing Agreement, and other certifications aim at establishing science-based standards regarding soil testing, water, animal feces, imports, and more. The leafy green supply chains are fragmented in terms of tagging methods and data management services used. There are obstacles in implementing Dendritic Identifiers in that all parties must have systems capable of joining blockchain networks. While there is still a lot to take into consideration for implementation, solutions like the IBM Food Trust pose options for a more fluid transfer of information. Dendritic Identifiers beat out competing tagging technologies in that they work with cellphones, are low cost, and are blockchain compatible. Growers and processors are excited by the opportunity to showcase their extensive food safety measures. The next step in understanding the use environment is to focus on the retail distribution and the retailer specifically.

ContributorsMin, Eleanor (Author) / Manfredo, Mark (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2022-05
165224-Thumbnail Image.png
Description

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the

The purpose of this research is to better understand the potential use environment of a Dendritic Identifier within the current leafy green supply chain, including the exploration of potential costs of implementation as well as non-economic costs. This information was collected through an extensive review of literature and through the engagement in in-depth interviews with professionals that work in the growing, distribution, and processing of leafy greens. Food safety in the leafy green industry is growing in importance in the wake of costly outbreaks that resulted and recalls and lasting market damage. The Dendritic Identifier provides a unique identification tag that is unclonable, scannable, and compatible with blockchain systems. It is a digital trigger that can be implemented throughout the commercial leafy green supply chain to increase visibility from farm to fork for the consumer and a traceability system for government agencies to trace outbreaks. Efforts like the Food Safety Modernization Act, the Leafy Green Marketing Agreement, and other certifications aim at establishing science-based standards regarding soil testing, water, animal feces, imports, and more. The leafy green supply chains are fragmented in terms of tagging methods and data management services used. There are obstacles in implementing Dendritic Identifiers in that all parties must have systems capable of joining blockchain networks. While there is still a lot to take into consideration for implementation, solutions like the IBM Food Trust pose options for a more fluid transfer of information. Dendritic Identifiers beat out competing tagging technologies in that they work with cellphones, are low cost, and are blockchain compatible. Growers and processors are excited by the opportunity to showcase their extensive food safety measures. The next step in understanding the use environment is to focus on the retail distribution and the retailer specifically.

ContributorsMin, Eleanor (Author) / Manfredo, Mark (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Information Systems (Contributor)
Created2022-05