Matching Items (7)

Filtering by

Clear all filters

131898-Thumbnail Image.png

Overcoming Barriers to Sustainable Urban Gardening and Farming in the Sonoran Desert

Description

Urban agriculture includes both farming and gardening, typically in a community format, in urban areas. Agrihoods are neighborhoods centered around food production and they are becoming more popular residential areas as the local food movement grows. Agritopia is one of

Urban agriculture includes both farming and gardening, typically in a community format, in urban areas. Agrihoods are neighborhoods centered around food production and they are becoming more popular residential areas as the local food movement grows. Agritopia is one of these agrihoods; located in Gilbert, Arizona, it contains both an urban farm and a community garden. Agritopia is oft cited for being an exemplary agrihood. This thesis uses Agritopia as a case study for exploring the challenges associated with urban agriculture in the Sonoran Desert.
Most urban agriculture sites experience challenges related to sustainability, but in the Sonoran Desert, even more challenges arise as a result of a unique climate, soil conditions, intense storms, and water scarcity. The objective of this project was to obtain information on common barriers to urban agriculture in the Sonoran Desert, as well as ways to overcome these barriers that will be made public for the purpose of improving sustainability of similar agriculture projects. I used interviews with gardeners and farm staff as my primary research method to gain insight to these barriers and solutions, and I coded their responses relating to challenges according to frequency mentioned. Using my findings, I compiled a thorough list of recommendations that urban agriculture projects in the Sonoran Desert or in similar climatic areas can use to achieve greater success and sustainable outcomes.

Contributors

Agent

Created

Date Created
2020-05

134459-Thumbnail Image.png

Does Inclusivity Really Matter? The Importance of Diversity and Inclusion in Farm-Based Internship Programs

Description

Current farming demographics in the United States indicate an aging and overwhelmingly white group of farmers, stimulating the need for engaging a younger and more diverse population. There is an opportunity to engage these populations through farm-based internship and apprenticeshi

Current farming demographics in the United States indicate an aging and overwhelmingly white group of farmers, stimulating the need for engaging a younger and more diverse population. There is an opportunity to engage these populations through farm-based internship and apprenticeship programs, which are immersive programs on small-scale, sustainable farms. These programs are unique in providing hands-on training, housing, meals, and a stipend in return for labor, presenting a pathway to social empowerment. The potential outcomes of increasing diversity and inclusion in farm programs are absent from the research on the benefits of diversity and inclusion in other work environments, such as the corporate setting. This paper presents the results of a study aimed at determining levels of diversity and inclusion in United States farm-based internship programs, and the viability of these programs as an effective opportunity to engage marginalized young people in farming. The study of 13 farm owners and managers across the U.S. found that the participants are focused on fostering education and training, environmental benefits, and a sense of community in their respective programs. All participants either want to establish, or believe they currently have, an inclusive workplace on their farm, but also indicated a barrier to inclusivity in the lack of a diverse applicant pool. Future recommendations for removing that barrier and involving more young, diverse interns include increased outreach and access to these programs, the use of inclusive language, and further research.

Contributors

Created

Date Created
2017-05

137075-Thumbnail Image.png

A Partial Life Cycle Assessment of Oranges Grown Locally and Afar: An Evaluation of the Significance of Food Miles

Description

This thesis was conducted in order to determine the role played by food miles metrics in making the agricultural industry more sustainable. In an effort to analyze the importance of eat locally this study utilizes a partial life cycle assessment.

This thesis was conducted in order to determine the role played by food miles metrics in making the agricultural industry more sustainable. In an effort to analyze the importance of eat locally this study utilizes a partial life cycle assessment. This study looks at oranges grown in Arizona and California and inputs such as water, energy, fertilizer, herbicide, pesticide, frost mitigation, and distance in order to conduct the partial life cycle assessment. Results of this study indicate that food miles are not as significant, in relation to overall energy input, as the locavore movement claims. This is because production processes account for a larger portion of the total energy used in the food chain than what these claims suggest. While eating locally is still a significant way of reducing energy use, this thesis shows that decisions about eating sustainably should not only focus on the distance that the products travel, but place equal, if not more, importance on energy use differences due to geographic location and in-farm operations. Future research should be completed with more comprehensive impact categories and conducted for different crops, farming, and locations. Further research is needed in order to confirm or challenge the results of this thesis. With more research conducted regarding this topic, ecological labeling of agricultural products could be improved to help consumers make the most informed choices possible.

Contributors

Agent

Created

Date Created
2014-05

147516-Thumbnail Image.png

An Environmental and Economic Analysis of The Near Future of Lithium Ion Batteries

Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

Contributors

Agent

Created

Date Created
2021-05

148085-Thumbnail Image.png

Assessing Urban Agricultural Practices in Desert Cities

Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

Contributors

Created

Date Created
2021-05

134888-Thumbnail Image.png

The Potential of Dryland Farming with a Prosopis-based Agroforestry System

Description

The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such

The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use water that has been brought up by the roots of mesquite trees. This means that there is a potential for food crops to be grown under the trees without using additional irrigation measures. This could be used where access to water is limited or for a sustainability-minded farmer who is trying to reduce water inputs in an arid environment. Mesquite trees produce a variety of products, including lumber and bean pods that can be ground down into an edible flour. Both products demand a high price in the marketplace and are produced in addition to the crops that can potentially be grown beneath the mesquite tree. In order to determine whether or not it is possible to grow crops under mesquite trees, I reviewed a wide range of literature regarding hydraulic redistribution, mesquite trees in general, and what plants might be best suited for growing beneath a mesquite. The list of plants was narrowed down to four crops that seemed most likely to survive in shaded, low water conditions in a hot environment. There has not been any research done on crops growing beneath mesquite trees, so the next step for research would be to experiment with each of the crops to determine how well each species can adapt to the specified conditions.

Contributors

Agent

Created

Date Created
2016-12

164865-Thumbnail Image.png

Lithium in EV Supply Chains: Charting a Path for Lithium Into the Future

Description

The project goal is aimed to research the most pressing issues facing the lithium supply chain today. It then is tasked with charting a path into the future through strategic recommendations that will help reduce risk, and make a greener, cleaner, and more ethical supply chain.

Contributors

Agent

Created

Date Created
2022-05