Matching Items (23)
Filtering by

Clear all filters

137075-Thumbnail Image.png
Description
This thesis was conducted in order to determine the role played by food miles metrics in making the agricultural industry more sustainable. In an effort to analyze the importance of eat locally this study utilizes a partial life cycle assessment. This study looks at oranges grown in Arizona and California

This thesis was conducted in order to determine the role played by food miles metrics in making the agricultural industry more sustainable. In an effort to analyze the importance of eat locally this study utilizes a partial life cycle assessment. This study looks at oranges grown in Arizona and California and inputs such as water, energy, fertilizer, herbicide, pesticide, frost mitigation, and distance in order to conduct the partial life cycle assessment. Results of this study indicate that food miles are not as significant, in relation to overall energy input, as the locavore movement claims. This is because production processes account for a larger portion of the total energy used in the food chain than what these claims suggest. While eating locally is still a significant way of reducing energy use, this thesis shows that decisions about eating sustainably should not only focus on the distance that the products travel, but place equal, if not more, importance on energy use differences due to geographic location and in-farm operations. Future research should be completed with more comprehensive impact categories and conducted for different crops, farming, and locations. Further research is needed in order to confirm or challenge the results of this thesis. With more research conducted regarding this topic, ecological labeling of agricultural products could be improved to help consumers make the most informed choices possible.
ContributorsMaggass, Melissa Gail (Author) / Manuel-Navarrete, David (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor)
Created2014-05
134459-Thumbnail Image.png
Description
Current farming demographics in the United States indicate an aging and overwhelmingly white group of farmers, stimulating the need for engaging a younger and more diverse population. There is an opportunity to engage these populations through farm-based internship and apprenticeship programs, which are immersive programs on small-scale, sustainable farms. These

Current farming demographics in the United States indicate an aging and overwhelmingly white group of farmers, stimulating the need for engaging a younger and more diverse population. There is an opportunity to engage these populations through farm-based internship and apprenticeship programs, which are immersive programs on small-scale, sustainable farms. These programs are unique in providing hands-on training, housing, meals, and a stipend in return for labor, presenting a pathway to social empowerment. The potential outcomes of increasing diversity and inclusion in farm programs are absent from the research on the benefits of diversity and inclusion in other work environments, such as the corporate setting. This paper presents the results of a study aimed at determining levels of diversity and inclusion in United States farm-based internship programs, and the viability of these programs as an effective opportunity to engage marginalized young people in farming. The study of 13 farm owners and managers across the U.S. found that the participants are focused on fostering education and training, environmental benefits, and a sense of community in their respective programs. All participants either want to establish, or believe they currently have, an inclusive workplace on their farm, but also indicated a barrier to inclusivity in the lack of a diverse applicant pool. Future recommendations for removing that barrier and involving more young, diverse interns include increased outreach and access to these programs, the use of inclusive language, and further research.
ContributorsLascola, Dania (Co-author) / Biel, Braden (Co-author) / Cloutier, Scott (Thesis director) / MacFadyen, Joshua (Committee member) / School of International Letters and Cultures (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication

This honors thesis is focused on two separate catalysis projects conducted under the mentorship of Dr. Javier Pérez-Ramírez at ETH Zürich. The first project explored ethylene oxychlorination over supported europium oxychloride catalysts. The second project investigated alkyne semihydrogenation over nickel phosphide catalysts. This work is the subject of a publication of which I am a co-author, as cited below.

Project 1 Abstract: Ethylene Oxychlorination
The current two-step process for the industrial process of vinyl chloride production involves CuCl2 catalyzed ethylene oxychlorination to ethylene dichloride followed by thermal cracking of the latter to vinyl chloride. To date, no industrial application of a one-step process is available. To close this gap, this work evaluates a wide range of self-prepared supported CeO2 and EuOCl catalysts for one-step production of vinyl chloride from ethylene in a fixed-bed reactor at 623 773 K and 1 bar using feed ratios of C2H4:HCl:O2:Ar:He = 3:3 6:1.5 6:3:82 89.5. Among all studied systems, CeO2/ZrO2 and CeO2/Zeolite MS show the highest activity but suffer from severe combustion of ethylene, forming COx, while 20 wt.% EuOCl/γ-Al2O3 leads to the best vinyl chloride selectivity of 87% at 15.6% C2H4 conversion with complete suppression of CO2 formation and only 4% selectivity to CO conversion for over 100 h on stream. Characterization by XRD and EDX mapping reveals that much of the Eu is present in non-active phases such as Al2Eu or EuAl4, indicating that alternative synthesis methods could be employed to better utilize the metal. A linear relationship between conversion and metal loading is found for this catalyst, indicating that always part of the used Eu is available as EuOCl, while the rest forms inactive europium aluminate species. Zeolite-supported EuOCl slightly outperforms EuOCl/γ Al2O3 in terms of total yield, but is prone to significant coking and is unstable. Even though a lot of Eu seems locked in inactive species on EuOCl/γ Al2O3, these results indicate possible savings of nearly 16,000 USD per kg of catalyst compared to a bulk EuOCl catalyst. These very promising findings constitute a crucial step for process intensification of polyvinyl chloride production and exploring the potential of supported EuOCl catalysts in industrially-relevant reactions.

Project 2 Abstract: Alkyne Semihydrogenation
Despite strongly suffering from poor noble metal utilization and a highly toxic selectivity modifier (Pb), the archetypal catalyst applied for the three-phase alkyne semihydrogenation, the Pb-doped Pd/CaCO3 (Lindlar catalyst), is still being utilized at industrial level. Inspired by the very recent strategies involving the modification of Pd with p-block elements (i.e., S), this work extrapolates the concept by preparing crystalline metal phosphides with controlled stoichiometry. To develop an affordable and environmentally-friendly alternative to traditional hydrogenation catalysts, nickel, a metal belonging to the same group as Pd and capable of splitting molecular hydrogen has been selected. Herein, a simple two-step synthesis procedure involving nontoxic precursors was used to synthesize bulk nickel phosphides with different stoichiometries (Ni2P, Ni5P4, and Ni12P5) by controlling the P:Ni ratios. To uncover structural and surface features, this catalyst family is characterized with an array of methods including X-ray diffraction (XRD), 31P magic-angle nuclear magnetic resonance (MAS-NMR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Bulk-sensitive techniques prove the successful preparation of pure phases while XPS analysis unravels the facile passivation occurring at the NixPy surface that persists even after reductive treatment. To assess the characteristic surface fingerprints of these materials, Ar sputtering was carried out at different penetration depths, reveling the presence of Ni+ and P-species. Continuous-flow three-phase hydrogenations of short-chain acetylenic compounds display that the oxidized layer covering the surface is reduced under reaction conditions, as evidenced by the induction period before reaching the steady state performance. To assess the impact of the phosphidation treatment on catalytic performance, the catalysts were benchmarked against a commercial Ni/SiO2-Al2O3 sample. While Ni/SiO2-Al2O3 presents very low selectivity to the alkene (the selectivity is about 10% at full conversion) attributed to the well-known tendency of naked nickel nanoparticles to form hydrides, the performance of nickel phosphides is highly selective and independent of P:Ni ratio. In line with previous findings on PdxS, kinetic tests indicate the occurrence of a dual-site mechanism where the alkyne and hydrogen do not compete for the same site.

This work is the subject of a publication of which I am a co-author, as cited below.

D. Albani; K. Karajovic; B. Tata; Q. Li; S. Mitchell; N. López; J. Pérez-Ramírez. Ensemble Design in Nickel Phosphide Catalysts for Alkyne Semi-Hydrogenation. ChemCatChem 2019. doi.org/10.1002/cctc.201801430
ContributorsTata, Bharath (Author) / Deng, Shuguang (Thesis director) / Muhich, Christopher (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134888-Thumbnail Image.png
Description
The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use

The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use water that has been brought up by the roots of mesquite trees. This means that there is a potential for food crops to be grown under the trees without using additional irrigation measures. This could be used where access to water is limited or for a sustainability-minded farmer who is trying to reduce water inputs in an arid environment. Mesquite trees produce a variety of products, including lumber and bean pods that can be ground down into an edible flour. Both products demand a high price in the marketplace and are produced in addition to the crops that can potentially be grown beneath the mesquite tree. In order to determine whether or not it is possible to grow crops under mesquite trees, I reviewed a wide range of literature regarding hydraulic redistribution, mesquite trees in general, and what plants might be best suited for growing beneath a mesquite. The list of plants was narrowed down to four crops that seemed most likely to survive in shaded, low water conditions in a hot environment. There has not been any research done on crops growing beneath mesquite trees, so the next step for research would be to experiment with each of the crops to determine how well each species can adapt to the specified conditions.
ContributorsMesser, Luke Winston (Author) / Eakin, Hallie (Thesis director) / Hall, Sharon (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134980-Thumbnail Image.png
Description
Buried under ice and snow in Greenland, the abandoned Camp Century holds the remnants of a Danish-American Cold War-era operation left to achieve final disposal beneath a tomb of ice. Nearly 50 years later, climate projections hypothesize that snowmelt will exceed snowfall in 2090—releasing the trapped hazardous wastes at Cam

Buried under ice and snow in Greenland, the abandoned Camp Century holds the remnants of a Danish-American Cold War-era operation left to achieve final disposal beneath a tomb of ice. Nearly 50 years later, climate projections hypothesize that snowmelt will exceed snowfall in 2090—releasing the trapped hazardous wastes at Camp Century. This thesis examines the mechanisms through which the international community is able to remediate climate change impacts on Camp Century wastes. The wastes are characterized and examined as either a problem of transboundary pollution, as an issue of military accountability, or as an issue of climate change policy. As revealed, the wastes are unable to be classified as transboundary pollutants. Though classified as a point-source transboundary risk, they are neither a traded or public risk. Furthermore, no international or domestic transboundary pollution agreements incorporate provisions encompassing the specific attributes of Camp Century’s waste. Camp Century is also not an issue of military accountability as U.S. base cleanup laws and environmental regulations do not apply abroad and as the original bilateral agreement governing the site is insufficient in addressing potential ice melt. Finally, as examined through institutions such as the UNFCCC and the Paris Agreement, Camp Century is, again, unable to be incorporated in current frameworks such as adaptation as adaption efforts are concentrated on developing nations. This thesis reveals the inability of current frameworks, institutions, and agreements to effectively remediate Camp Century wastes which is a case utilized as a microcosm through which to examine international capacity in addressing climate-change induced impacts.
ContributorsKilker, Natalie Angelina (Author) / Klinsky, Sonja (Thesis director) / Bodansky, Daniel (Committee member) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices.

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis director) / Zanin, Alaina (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

To mitigate climate change, carbon needs to be removed from the atmosphere and stored for thousands of years. Currently, carbon removal and storage are voluntarily procured, and longevity of storage is inconsistently defined and regulated. Clauses can be added to procurement contracts to require long-term management and increase the durability

To mitigate climate change, carbon needs to be removed from the atmosphere and stored for thousands of years. Currently, carbon removal and storage are voluntarily procured, and longevity of storage is inconsistently defined and regulated. Clauses can be added to procurement contracts to require long-term management and increase the durability of storage. Well-designed and properly enforced contracts can pave the way to future regulation for long-term carbon management.

ContributorsHagood, Emily (Author) / Lackner, Klaus (Thesis director) / Marchant, Gary (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Sustainability (Contributor)
Created2023-05
Description

As technology has evolved over time and the U.S. population increases each year, this thesis focuses on the ways in which food production has shifted from the original farm to table to industrialized, processed food systems. Through a rationalization perspective, this research looks to the history and repercussions of industrial

As technology has evolved over time and the U.S. population increases each year, this thesis focuses on the ways in which food production has shifted from the original farm to table to industrialized, processed food systems. Through a rationalization perspective, this research looks to the history and repercussions of industrial agriculture as it has shifted over time. The term over-industrialization is used to operationalize the state of our current production methods. These methods focus extensively on the least expensive and most rapid methods to produce large yields of food products and pay no mind to ethics, respect of culture, land, or quality of products. Today, there is a shroud the corporations have placed over food production to ensure a “what we can’t see doesn’t affect us” belief system. In this way, the thesis provides insight on past, current, and future methods of manufacturing. I conclude that although plausible alternatives are present, continued research and substantial producer and consumer changes must be our main priority.

ContributorsBrodkin, Emma (Author) / Keahey, Jennifer (Thesis director) / Perkins, Tracy (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Social and Behavioral Sciences (Contributor)
Created2023-05
184076-Thumbnail Image.png
Description

Climate change is impacting fisheries through ecological shifts altering the geographical distribution and quantity of fish species. About 60% of United States fish caught by volume is caught in the Alaska region, with Alaska's economy dependent on fisheries. Additionally, fisheries are an important source of employment for many Alaskan communities.

Climate change is impacting fisheries through ecological shifts altering the geographical distribution and quantity of fish species. About 60% of United States fish caught by volume is caught in the Alaska region, with Alaska's economy dependent on fisheries. Additionally, fisheries are an important source of employment for many Alaskan communities. Therefore, it is important to have policies and strategies in place to prepare for ongoing climate impacts. One step to support better tailoring policy to support those most likely to be negatively impacted is to identify the fishing communities most vulnerable to climate change. This study uses data on vulnerable fish species and fishery catch by species and community to identify what communities are most vulnerable to changing climate conditions. I identify 26 communities that are fishing climate vulnerable species. I then use vulnerable fish species revenue data to identify communities most at risk either because they generate a substantial amount of revenue from these species or a substantial proportion of their total revenue is derived from these species. Using species-specific revenue, I show that Sablefish contribute the most to this vulnerability.

ContributorsFulton, Breanna (Author) / Kroetz, Kailin (Thesis director) / Abbot, Joshua (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2023-05
Description

This thesis will examine possible connection points between the health of a local environmental/climate news ecosystem and that local community’s belief in and vulnerability to the effects of climate change in Central Appalachia and Northern Virginia. The three counties that will be studied in Virginia are Arlington, Buchanan and Wise

This thesis will examine possible connection points between the health of a local environmental/climate news ecosystem and that local community’s belief in and vulnerability to the effects of climate change in Central Appalachia and Northern Virginia. The three counties that will be studied in Virginia are Arlington, Buchanan and Wise Counties. This research will be mainly a hypothesis-generating descriptive analysis of data, coupled with both interviews with researchers and local experts, in addition to observations from relevant literature about the possible connections between availability of environmental news with climate change, institutional belief and climate vulnerability data. The local history of resource extraction will also be explored. The point of this thesis is not to prove that a lack of access to strong, locally focused climate and environmental news increases vulnerability to the effects of climate change (although it does raise this as a possibility). Rather, it is to continue a conversation with journalists, media professionals and climate professionals about how to approach understanding and engaging groups left out of the climate conversation and groups who've been traditionally underserved by news media when it comes to climate information and appeals for institutional trust. This conversation is already happening, especially when it comes to the importance of the health of local, community focused news in general in Appalachia, but given the urgency and scale of the climate crisis, merits continuation and some inquiry into environmental news.

ContributorsFlaherty, Fiona (Author) / Beschloss, Steven (Thesis director) / Nelson, Jacob (Committee member) / Babits, Sadie (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / School of International Letters and Cultures (Contributor)
Created2022-12