Matching Items (29)
Filtering by

Clear all filters

133896-Thumbnail Image.png
Description
After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been

After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been prepared for the difficulty of learning sales. Sales get a bad rap and very often is the last thing that young entrepreneurs want to try, but the reality is that sales is oxygen to a company and a required skill for an entrepreneur. Due to this, I compiled all of my knowledge into an e-book for young entrepreneurs starting out to learn how to open up a conversation with a prospect all the way to closing them on the phone. Instead of starting from scratch like I did, college entrepreneurs can learn the bare basics of selling their own services, even if they are terrified of sales and what it entails. In this e-book, there are tips that I have learned to deal with my anxiety about sales such as taking the pressure off of yourself and prioritizing listening more than pitching. Instead of trying to teach sales expecting people to be natural sales people, this e-book takes the approach of helping entrepreneurs that are terrified of sales and show them how they can cope with this fear and still close a client. In the future, I hope young entrepreneurs will have access to more resources that handle this fear and make it much easier for them to learn it by themselves. This e-book is the first step.
ContributorsMead, Kevin Tyler (Author) / Sebold, Brent (Thesis director) / Kruse, Gabriel (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134602-Thumbnail Image.png
Description
This project created a tool for visualizing constructive solid geometry (CSG) using an HTC Vive virtual reality
headset. This tool provides functionality for surface triangulation
of a variety of three-dimensional primitive solids. Then with those
solids it can perform the core CSG operations—intersection,
union and complement—to create more complex objects. This
tool also parses in

This project created a tool for visualizing constructive solid geometry (CSG) using an HTC Vive virtual reality
headset. This tool provides functionality for surface triangulation
of a variety of three-dimensional primitive solids. Then with those
solids it can perform the core CSG operations—intersection,
union and complement—to create more complex objects. This
tool also parses in Silo data files to allow the visualization
of scientific models like the Annular Core Research Reactor.
This project is useful for both education and visualization. This
project will be used by scientists to visualize and understand
their simulation results, and used as a museum exhibit to engage
the next generation of scientists in computer modeling.
ContributorsJones, Derek Matthew (Author) / Kashiwagi, Dean (Thesis director) / O'Brien, Matthew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132921-Thumbnail Image.png
Description
Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of interactable virtual worlds (Wikipedia, “Virtual reality”). The many worlds of virtual reality are often expansive, colorful, and detailed. However, there is one great flaw among them- an emotion evoked in many users through the exploration of such worlds-loneliness.
The content in these worlds is impressive, immersive, and entertaining. Without other people to share in these experiences, however, one can find themselves lonely. Users discover a feeling that no matter how many objects and colors surround them in countless virtual worlds, every world feels empty. As humans are social beings by nature, they feel lost without a sense of human connection and human interaction. Multiplayer experiences offer this missing element into the immersion of virtual reality worlds. Multiplayer offers users the opportunity to interact with other live people in a virtual simulation, which creates lasting memories and deeper, more meaningful immersion.
ContributorsJorgensen, Nicholas Keith (Co-author) / Jorgensen, Caitlin Nicole (Co-author) / Selgrad, Justin (Thesis director) / Ehgner, Arnaud (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
What if unplanned free time could be spent with friends instead of trying to contact them? This app will do that by connecting you with friends who are ready to hang out. Kickback is a mobile app designed to connect individuals with their friends and businesses that offer opportunities to

What if unplanned free time could be spent with friends instead of trying to contact them? This app will do that by connecting you with friends who are ready to hang out. Kickback is a mobile app designed to connect individuals with their friends and businesses that offer opportunities to socialize in a group setting. The idea had been floating around in my head for a few years and this creative project gave me the opportunity to try my hand at making the idea into a reality. This thesis is a combination of technical efforts and business know-how that I had to learn in order to keep up along the way.
ContributorsFegard, Nathan (Author) / Sebold, Brent (Thesis director) / Trujillo, Rhett (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134144-Thumbnail Image.png
Description
The main objective of this thesis is to describe and analyze Clippr, an ASU startup founded by four students: Adam Lynch, Eric Gottfried, Ty Sivley, and Thomas Carpaneto. This paper will describe the formation of Clippr as a business, analyze the work and reasoning for dissolving the business, and suggest

The main objective of this thesis is to describe and analyze Clippr, an ASU startup founded by four students: Adam Lynch, Eric Gottfried, Ty Sivley, and Thomas Carpaneto. This paper will describe the formation of Clippr as a business, analyze the work and reasoning for dissolving the business, and suggest three pivots that could increase the chances of success for the future of Clippr. These three pivots are: mini salons, a concierge service, and an online resource. The idea for Clippr came from Sam, the team's friend's experience within the cosmetology industry. Sam graduated from cosmetology school in Phoenix and started his career as an assistant, which is the most common entry level position within the industry. Assistants do not get to work with clients and primarily do chores around the salon so he was not gaining any valuable experience. Eventually Sam found a position at a salon in Flagstaff. Unfortunately, he was not scheduled enough hours to pay his rent which forced him to travel back to Phoenix to cut his friend's and family's hair to make ends meet. Sam is not alone experiencing these issues within the industry, they are a common trend throughout the cosmetology field. It was found that there is a clear problem that affects every stylist: they struggle to reap the benefits of their self-employment. Most stylists become independent contractors where they are constrained by the salon's management. They are generally forced to work during the salon's hours of operations, promote specific products, adhere to a dress code, and forfeit their clients information. On the other hand, freelance workers outside of salons do enjoy greater freedoms within their work but with significant hurdles to overcome. They have a much harder time building a client base and face prohibitive start-up costs that make it harder to break into the industry.
ContributorsGottfried, Eric (Co-author) / Lynch, Adam (Co-author) / Sebold, Brent (Thesis director) / Balasooriya, Janaka (Committee member) / Computer Science and Engineering Program (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134100-Thumbnail Image.png
Description
Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to

Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to play music as they hear it in their head, and refining the user's sense of rhythm. Several different features were included to achieve this such as a score, different levels, a demo feature, and a metronome. The game was tested for its ability to teach and for its overall enjoyability by using a small sample group. Most participants of the sample group noted that they felt as if their sense of rhythm and drumming skill level would improve by playing the game. Through the findings of this project, it can be concluded that while it should not be considered as a complete replacement for traditional instruction, a virtual environment can be successfully used as a learning aid and practicing tool.
ContributorsDinapoli, Allison (Co-author) / Tuznik, Richard (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
Description

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image,

The NCAA is changing the current rules and regulations around a student-athlete’s name, image, and likeness. Previously, student-athletes were not allowed to participate in business activities or noninstitutional promotional activities. With the new rule changes, student-athletes will be able to engage in business activities related to their own name, image, and likeness. The goal of the team was to help “prepare athletes to understand and properly navigate the evolving restrictions and guidelines around athlete name, image, and likeness”. In order to accomplish this, the team had to understand the problems student-athletes face with these changing rules and regulations. The team conducted basic market research to identify the problem. The problem discovered was the lack of communication between student-athletes and businesses. In order to verify this problem, the team conducted several interviews with Arizona State University Athletic Department personnel. From the interviews, the team identified that the user is the student-athletes and the buyer is the brands and businesses. Once the problem was verified and the user and buyer were identified, a solution that would best fit the customers was formulated. The solution is a platform that assists student-athletes navigate the changing rules of the NCAA by providing access to a marketplace optimized to working with student-athletes and offering an ease of maintaining relationships between student-athletes and businesses. The solution was validated through meetings with interested brands. The team used the business model and market potential to pitch the business idea to the brands. Finally, the team gained traction by initiating company partnerships.

ContributorsSchulte, Brooke (Co-author) / Recato, Bella (Co-author) / Winston, Blake (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeffrey (Committee member) / Computer Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148244-Thumbnail Image.png
Description

In this experiment, a haptic glove with vibratory motors on the fingertips was tested against the standard HTC Vive controller to see if the additional vibrations provided by the glove increased immersion in common gaming scenarios where haptic feedback is provided. Specifically, two scenarios were developed: an explosion scene containing

In this experiment, a haptic glove with vibratory motors on the fingertips was tested against the standard HTC Vive controller to see if the additional vibrations provided by the glove increased immersion in common gaming scenarios where haptic feedback is provided. Specifically, two scenarios were developed: an explosion scene containing a small and large explosion and a box interaction scene that allowed the participants to touch the box virtually with their hand. At the start of this project, it was hypothesized that the haptic glove would have a significant positive impact in at least one of these scenarios. Nine participants took place in the study and immersion was measured through a post-experiment questionnaire. Statistical analysis on the results showed that the haptic glove did have a significant impact on immersion in the box interaction scene, but not in the explosion scene. In the end, I conclude that since this haptic glove does not significantly increase immersion across all scenarios when compared to the standard Vive controller, it should not be used at a replacement in its current state.

ContributorsGriffieth, Alan P (Author) / McDaniel, Troy (Thesis director) / Selgrad, Justin (Committee member) / Computing and Informatics Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148262-Thumbnail Image.png
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05