Matching Items (8)
Filtering by

Clear all filters

Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014
Description
A desk provides an interesting forum between two people. The first party sits behind the desk while the second approaches with a question. The desk presents itself as a stage for the drama of that conversation to take place; as all furniture and property do, we naturally make assumptions about

A desk provides an interesting forum between two people. The first party sits behind the desk while the second approaches with a question. The desk presents itself as a stage for the drama of that conversation to take place; as all furniture and property do, we naturally make assumptions about the owner based on the things they possess. Just as a Ferrari says one thing while a truck says something different, our furniture conveys a similar sensation. The desk is special because it acts as a stage - it can create a very subtle first impression of the person who owns it. The question then becomes, "what should I try to convey through the desk I sat behind?". If someone walked into my office and looked strictly at my desk, what impression would I want to give them about who I am as an individual? I conjunction with this question about the design of the desk itself comes to another question about the materials used. This thesis goes into the symbolic nature of wood in modern and ancient times across cultures, explores wood in modern construction today and explores the source of the wood used in this specific project through a supplier analysis of Porter Barn Wood. Porter Barn Wood is a local Phoenix company that specializes in reclaimed barn wood delivered from the east coast. Determining the story of how the wood got to Phoenix and to the company that made it possible was just as important to the story of the desk as the wood itself. Overall, this project explored my ability to construct a desk and build a story around that piece of art while maintaining a business mindset throughout. It was eye-opening to me and I would encourage you to read further!
ContributorsDuran, Alejandro Michael (Author) / Vitikas, Stanely (Thesis director) / Fleming, David (Committee member) / Economics Program in CLAS (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
149523-Thumbnail Image.png
Description
Many expect renewable energy technologies to play a leading role in a sustainable energy supply system and to aid the shift away from an over-reliance on traditional hydrocarbon resources in the next few decades. This dissertation develops environmental, policy and social models to help understand various aspects of photovoltaic (PV)

Many expect renewable energy technologies to play a leading role in a sustainable energy supply system and to aid the shift away from an over-reliance on traditional hydrocarbon resources in the next few decades. This dissertation develops environmental, policy and social models to help understand various aspects of photovoltaic (PV) technologies. The first part of this dissertation advances the life cycle assessment (LCA) of PV systems by expanding the boundary of included processes using hybrid LCA and accounting for the technology-driven dynamics of environmental impacts. Hybrid LCA extends the traditional method combining bottom-up process-sum and top-down economic input-output (EIO) approaches. The embodied energy and carbon of multi-crystalline silicon photovoltaic systems are assessed using hybrid LCA. From 2001 to 2010, the embodied energy and carbon fell substantially, indicating that technological progress is realizing reductions in environmental impacts in addition to lower module price. A variety of policies support renewable energy adoption, and it is critical to make them function cooperatively. To reveal the interrelationships among these policies, the second part of this dissertation proposes three tiers of policy architecture. This study develops a model to determine the specific subsidies required to support a Renewable Portfolio Standard (RPS) goal. The financial requirements are calculated (in two scenarios) and compared with predictable funds from public sources. A main result is that the expected investments to achieve the RPS goal far exceed the economic allocation for subsidy of distributed PV. Even with subsidies there are often challenges with social acceptance. The third part of this dissertation originally develops a fuzzy logic inference model to relate consumers' attitudes about the technology such as perceived cost, maintenance, and environmental concern to their adoption intention. Fuzzy logic inference model is a type of soft computing models. It has the advantage of dealing with imprecise and insufficient information and mimicking reasoning processes of human brains. This model is implemented in a case study of residential PV adoption using data through a survey of homeowners in Arizona. The output of this model is the purchasing probability of PV.
ContributorsZhai, Pei (Author) / Williams, Eric D. (Thesis advisor) / Allenby, Braden (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2010
168390-Thumbnail Image.png
Description
Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical energy or solar-thermal energy, the production process of Ordinary Portland

Concentrating solar thermal power systems gained a wide interest for a long time to serve as a renewable and sustainable alternate source of energy. While the optimization and modification are ongoing, focused generally on solar power systems to provide solar-electrical energy or solar-thermal energy, the production process of Ordinary Portland Cement (OPC) has not changed over the past century. A linear refractive Fresnel lens application in cement production process is investigated in this research to provide the thermal power required to raise the temperature of lime up to 623 K (350C) with zero carbon emissions for stage two in a new proposed two-stage production process. The location is considered to be Phoenix, Arizona, with a linear refractive Fresnel lens facing south, tilted 33.45 equaling the location latitude, and concentrating solar beam radiation on an evacuated tube collector with tracking system continuously rotating about the north-south axis. The mathematical analysis showed promising results based on averaged monthly values representing an average hourly useful thermal power and receiver temperature during day-light hours for each month throughout the year. The maximum average hourly useful thermal power throughout the year was obtained for June as 33 kWth m-2 with a maximum receiver temperature achieved of 786 K (513C), and the minimum useful thermal power obtained during the month of December with 27 kWth m-2 and a minimum receiver temperature of 701 K (428C).
ContributorsAlkhuwaiteem, Mohammad (Author) / Phelan, Patrick (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2021
158380-Thumbnail Image.png
Description
The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the

The operating temperature of photovoltaic (PV) modules has a strong impact on the expected performance of said modules in photovoltaic arrays. As the install capacity of PV arrays grows throughout the world, improved accuracy in modeling of the expected module temperature, particularly at finer time scales, requires improvements in the existing photovoltaic temperature models. This thesis work details the investigation, motivation, development, validation, and implementation of a transient photovoltaic module temperature model based on a weighted moving-average of steady-state temperature predictions.

This thesis work first details the literature review of steady-state and transient models that are commonly used by PV investigators in performance modeling. Attempts to develop models capable of accounting for the inherent transient thermal behavior of PV modules are shown to improve on the accuracy of the steady-state models while also significantly increasing the computational complexity and the number of input parameters needed to perform the model calculations.

The transient thermal model development presented in this thesis begins with an investigation of module thermal behavior performed through finite-element analysis (FEA) in a computer-aided design (CAD) software package. This FEA was used to discover trends in transient thermal behavior for a representative PV module in a timely manner. The FEA simulations were based on heat transfer principles and were validated against steady-state temperature model predictions. The dynamic thermal behavior of PV modules was determined to be exponential, with the shape of the exponential being dependent on the wind speed and mass per unit area of the module.

The results and subsequent discussion provided in this thesis link the thermal behavior observed in the FEA simulations to existing steady-state temperature models in order to create an exponential weighting function. This function can perform a weighted average of steady-state temperature predictions within 20 minutes of the time in question to generate a module temperature prediction that accounts for the inherent thermal mass of the module while requiring only simple input parameters. Validation of the modeling method presented here shows performance modeling accuracy improvement of 0.58%, or 1.45°C, over performance models relying on steady-state models at narrow data intervals.
ContributorsPrilliman, Matthew (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
131903-Thumbnail Image.png
Description
This project seeks to provide a general picture of the economic dependence on fossil fuels per County in the United States. The purpose for this study is creating a foundation for conversations about the future of fossil fuel workers and counties that depend heavily on fossil fuels. The main indicators

This project seeks to provide a general picture of the economic dependence on fossil fuels per County in the United States. The purpose for this study is creating a foundation for conversations about the future of fossil fuel workers and counties that depend heavily on fossil fuels. The main indicators utilized for this were employment and payroll data extracted from United States Census Bureau’s County Business Patterns dataset. A section on similarities between fossil fuel workers and other occupations was included, which shows possible alternative industries for fossil fuel workers. The main goal of the project is to provide possible solutions for mitigating job losses in the future. Some proposed solutions include retraining, expanding higher education, and investing in new industries. It is most important for future work to include input from most vulnerable counties and understand the social and cultural complexities that are tied to this problem.
ContributorsRamirez Torres, Jairo Adriel (Author) / Miller, Claek (Thesis director) / Shutters, Shade (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Electrical Engineering Program (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132596-Thumbnail Image.png
Description
Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a

Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a PV module shading water, a stand-alone PV module, and unshaded water, it was found that shading water can reduce evaporation and lower PV module operating temperature at the same time. Using averaged data from two days of testing, the volume per unit surface area of water that evaporated per hour was 0.319 cm3/cm2 less for the shaded water compared to the unshaded water. The evaporation rates found in the experiment are compared to those of Lake Mead to see the amount of water lost on a large scale. For the operating temperature of the PV module, the module used for shading had a consistently lower temperature than the stand-alone module. On the first day, the shading module had an average temperature 5.1 C lower than the stand-alone module average temperature. On day two, the shading module had an average temperature 3.4 C lower than the stand-alone module average temperature. Using average temperatures between the two days from 10:30am and 4:45pm, the average daily temperature of the panel used for shading was 4.5C less than the temperature of the stand-alone panel. These results prove water shading by solar PV modules to be effective in reducing evaporation and lowering module operating temperature. Last, suggestions for future studies are discussed, such as performance analysis of the PV modules in this setting, economic analysis of using PV modules as shading, and the isolation of the different factors of evaporation (temperature, wind speed, and humidity).
ContributorsLee, John C (Author) / Phelan, Patrick (Thesis director) / Roedel, Ronald (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130966-Thumbnail Image.png
Description
Greenhouse gas emissions (GHG) continue to contribute heavily to global warming. It is estimated that the international community has only until 2050 to eliminate total carbon emissions or risk irreversible climate change. Arizona, despite its vast solar energy resources, is particularly behind in the global transition to carbon-free energy. This

Greenhouse gas emissions (GHG) continue to contribute heavily to global warming. It is estimated that the international community has only until 2050 to eliminate total carbon emissions or risk irreversible climate change. Arizona, despite its vast solar energy resources, is particularly behind in the global transition to carbon-free energy. This paper looks to explore issues that may be preventing Arizona from an efficient transition to carbon-free generation technologies. Identifiable factors include outdated state energy generation standards, lack of oversight and accountability of Arizona’s electricity industry regulatory body, and the ability for regulated utilities to take advantage of “dark money” campaign contributions. Various recommendations for mitigating the factors preventing Arizona from a carbon-free future are presented. Possibilities such as modernizing state energy generation standards, increasing oversight and accountability of Arizona’s electricity industry regulatory body, and potential market restructuring which would do away with the traditional regulated utility framework are explored. The goal is to inform readers of the issues plaguing the Arizona energy industry and recommend potential solutions moving forward.
ContributorsWaller, Troy (Author) / Sheriff, Glenn (Thesis director) / Rule, Troy (Committee member) / Economics Program in CLAS (Contributor) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-12