Matching Items (33)

132596-Thumbnail Image.png

The Water Loss and Solar Panel Operating Condition Effects of Using Solar Photovoltaic Panels to Shade a Body of Water

Description

Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic

Ensuring that people across the globe have enough water and electricity are two large issues that continue to grow. This study performs a test on whether using solar photovoltaic modules to shade water can potentially help diminish the issues of water and power. Using the setup of a PV module shading water, a stand-alone PV module, and unshaded water, it was found that shading water can reduce evaporation and lower PV module operating temperature at the same time. Using averaged data from two days of testing, the volume per unit surface area of water that evaporated per hour was 0.319 cm3/cm2 less for the shaded water compared to the unshaded water. The evaporation rates found in the experiment are compared to those of Lake Mead to see the amount of water lost on a large scale. For the operating temperature of the PV module, the module used for shading had a consistently lower temperature than the stand-alone module. On the first day, the shading module had an average temperature 5.1 C lower than the stand-alone module average temperature. On day two, the shading module had an average temperature 3.4 C lower than the stand-alone module average temperature. Using average temperatures between the two days from 10:30am and 4:45pm, the average daily temperature of the panel used for shading was 4.5C less than the temperature of the stand-alone panel. These results prove water shading by solar PV modules to be effective in reducing evaporation and lowering module operating temperature. Last, suggestions for future studies are discussed, such as performance analysis of the PV modules in this setting, economic analysis of using PV modules as shading, and the isolation of the different factors of evaporation (temperature, wind speed, and humidity).

Contributors

Agent

Created

Date Created
  • 2019-05

132892-Thumbnail Image.png

Green Charcoal: Case of Innovation Ecosystem in Nepal’s Renewable Energy System

Description

There is an increasing need to understand and develop clean cooking technologies in low- and middle-income countries (LMICs). The provision of clean energy where modern energy is not available is

There is an increasing need to understand and develop clean cooking technologies in low- and middle-income countries (LMICs). The provision of clean energy where modern energy is not available is important in advancing the 17 sustainable development goals as set by the United Nations. Green charcoal is a cooking fuel technology made from ground and compressed biochar, an organic material made from heating a feedstock (biomass, forest residues, agriculture waste, invasive species, etc.) in an oxygen deprived environment to high temperatures. Green charcoal behaves similarly to wood charcoal or coal but is different from these energy products in that it is produced from biomass, not from wood or fossil fuels. Green charcoal has gained prominence as a cooking fuel technology in South-East Asia recently. Within the context of Nepal, green charcoal is currently being produced using lantana camara, an invasive species in Nepal, as a feedstock in order to commoditize the otherwise destructive plant. The purpose of this study was to understand the innovation ecosystem of green charcoal within the context of Nepal’s renewable energy sector. An innovation ecosystem is all of the actors, users and conditions that contribute to the success of a particular method of value creation. Through a series of field interviews, it was determined that the main actors of the green charcoal innovation ecosystem are forest resources governance agencies, biochar producers, boundary organizations, briquette producers, distributors/vendors, the political economy of energy, and the food culture of individuals. The end user (user segment) of this innovation ecosystem is restaurants. Each actor was further analyzed based on the Ecosystem Pie Model methodology as created by Talmar, et al. using the actor’s individual resources, activities, value addition, value capture, dependence on green charcoal and the associated risk as the building blocks for analysis. Based on ecosystem analysis, suggestions were made on how to strengthen the green charcoal innovation ecosystem in Nepal’s renewable energy sector based on actor-actor and actor-green charcoal interactions, associated risks and dependence, and existing knowledge and technology gaps. It was determined that simply deploying a clean cooking technology does not guarantee success of the technology. Rather, there are a multitude of factors that contribute to the success of the clean cooking technology that deserve equal amounts of attention in order to successfully implement the technology.

Contributors

Agent

Created

Date Created
  • 2019-05

133907-Thumbnail Image.png

Affordable and Environmentally Conscious Living: Residential Rooftop Solar Solutions for Low-Income and Middle-Income Families

Description

As climate change and air pollution continue to plague the world today, committed citizens are doing their part to minimize their environmental impact. However, financial limitations have hindered a majority

As climate change and air pollution continue to plague the world today, committed citizens are doing their part to minimize their environmental impact. However, financial limitations have hindered a majority of individuals from adopting clean, renewable energy such as rooftop photovoltaic solar systems. England Sustainability Consulting plans to reverse this limitation and increase affordability for residents across Northern California to install solar panel systems for their energy needs. The purpose of this proposal is to showcase a new approach to procuring solar panel system components while offering the same products needed by each customer. We will examine market data to further prove the feasibility of this business approach while remaining profitable and spread our company's vision across all of Northern California.

Contributors

Created

Date Created
  • 2018-05

130966-Thumbnail Image.png

A Global Climate Crisis: Why is Arizona Behind The Renewable Energy Curve?

Description

Greenhouse gas emissions (GHG) continue to contribute heavily to global warming. It is estimated that the international community has only until 2050 to eliminate total carbon emissions or risk irreversible

Greenhouse gas emissions (GHG) continue to contribute heavily to global warming. It is estimated that the international community has only until 2050 to eliminate total carbon emissions or risk irreversible climate change. Arizona, despite its vast solar energy resources, is particularly behind in the global transition to carbon-free energy. This paper looks to explore issues that may be preventing Arizona from an efficient transition to carbon-free generation technologies. Identifiable factors include outdated state energy generation standards, lack of oversight and accountability of Arizona’s electricity industry regulatory body, and the ability for regulated utilities to take advantage of “dark money” campaign contributions. Various recommendations for mitigating the factors preventing Arizona from a carbon-free future are presented. Possibilities such as modernizing state energy generation standards, increasing oversight and accountability of Arizona’s electricity industry regulatory body, and potential market restructuring which would do away with the traditional regulated utility framework are explored. The goal is to inform readers of the issues plaguing the Arizona energy industry and recommend potential solutions moving forward.

Contributors

Agent

Created

Date Created
  • 2020-12

131677-Thumbnail Image.png

Solar Thermochemical Reactor

Description

As the need for environmentally friendly and renewable fuel sources rises, many are considering alternative fuel sources, such as solar power. The device explored in this report uses solar power,

As the need for environmentally friendly and renewable fuel sources rises, many are considering alternative fuel sources, such as solar power. The device explored in this report uses solar power, in theory, to heat a metal oxide, cerium oxide, to a desired temperature. At specific temperatures and pressures, a reaction between an input gas, carbon dioxide or water vapor, and the metal oxide may produce fuel in the form of hydrogen or carbon monoxide. In order to reach the temperatures required by the reaction, a filament inside a high-temperature radiant heater must be heated to the desired temperature. In addition, the system’s pressure range must be satisfied. A pressure and temperature measurement device, as well as a voltage control, must be connected to an interface with a computer in order to monitor the pressure and temperature of different parts of the system. The cerium oxide element must also be constructed and placed inside the system. The desired shape of the cerium oxide material is a tube, to allow the flow of gas through the tubes and system and to provide mechanical strength. To construct the metal oxide tubes, they need to be extruded, dried, and sintered correctly. All the manufactured elements described serve an essential purpose in the system and are discussed further in this document.
This report focuses on the manufacturing of ceria tubes, the construction of a high-temperature radiant heater filament, and the implementation of a pressure measurement device. The manufacturing of ceria tubes includes the extrusion, the drying, and the sintering of the tubes. In addition, heating element filament construction consists of spot-welding certain metals together to create a device similar to that of a light bulb filament. Different methods were considered in each of these areas, and they are described in this report. All of the explorations in this document move towards the final device, a thermochemical reactor for the production of hydrogen (H2) and carbon monoxide (CO) from water (H2O) and carbon dioxide (CO2).
The results of this report indicate that there are several important manufacturing steps to create the most desirable results, in terms of tube manufacturing and heating element design. For the correct tube construction, they must be dried in a drying rack, and they must be sintered in V-groove plates. In addition, the results of the heating element manufacturing indicate that the ideal heating element filament needs to be simple in design (easily fixed), cost-effective, require little construction time, attach to the ends of the system easily, provide mechanical flexibility, and prevent the coil from touching the walls of the tube it lies in. Each aspect of the ideal elements, whether they are tubes or heating elements, is explored in this report.

Contributors

Agent

Created

Date Created
  • 2020-05

The Future of Energy: Space-Based Solar Power

Description

Space-based solar power is a renewable energy that is an alternative to all other forms of energy production. It takes on a new approach that pushes energy production off-world. Energy

Space-based solar power is a renewable energy that is an alternative to all other forms of energy production. It takes on a new approach that pushes energy production off-world. Energy is harnessed and beamed down to a ground receiver via microwaves which is then sent to the grid and distributed to people across the country, and even globe. While the technology is new and still in the research and development stages, the ability is there. An economic analysis of the various technology yields levelized costs of energy comparable to current prices—under $.10/kWh. The markets and profits for this type of technology are abundant, ranging from commercial to military uses, with profits in the millions to billions of dollars. The environmental impacts are low compared to current energy production methods. The potential is great, the technology is close, and the future is near.

Contributors

Agent

Created

Date Created
  • 2020-05

137102-Thumbnail Image.png

An Evaluation of Wind Energy in the Urban Environment

Description

The global energy demand is expected to grow significantly in the next several decades and support for energy generation with high carbon emissions is continuing to decline. Alternative methods have

The global energy demand is expected to grow significantly in the next several decades and support for energy generation with high carbon emissions is continuing to decline. Alternative methods have gained interest, and wind energy has established itself as a viable source. Standard wind farms have limited room for growth and improvement, so wind energy has started to explore different directions. The urban environment is a potential direction for wind energy due to its proximity to the bulk of energy demand. CFD analysis has demonstrated that the presence of buildings can accelerate wind speeds between buildings and on rooftops. However, buildings generate areas of increased turbulence at their surface. The turbulence thickness and intensity vary with roof shape, building height, and building orientation. The analysis has concluded that good wind resource is possible in the urban environment in specific locations. With that, turbine selection becomes very important. A comparison has concluded that vertical axis wind turbines are more useful in the urban environment than horizontal axis wind turbines. Furthermore, building-augmented wind turbines are recommended because they are architecturally integrated into a building for the specific purpose of generating more energy. The research has concluded that large-scale generation in the urban environment is unlikely to be successful, but small-scale generation is quite viable. Continued research and investigation on urban wind energy is recommended.

Contributors

Agent

Created

Date Created
  • 2014-05

137742-Thumbnail Image.png

Developing a Tool to Identify Locations for Renewable Energy Potential

Description

Shifting to renewable energy from fossil fuels is not occurring rapidly. Determining where to locate renewable power plants could help expedite development. The project discussed here uses a GIS ranking

Shifting to renewable energy from fossil fuels is not occurring rapidly. Determining where to locate renewable power plants could help expedite development. The project discussed here uses a GIS ranking tool to determine potential locations for solar and wind power plants in Arizona. Criteria include renewable input (irradiance/wind class), topographic slope, and distance from transmission lines. These are ranked and summed to determine areas with the most potential. The resulting outputs show that there is much more potential land for solar development than wind development. Further analysis in this paper will focus solely on solar due to wind's lower potential. Land sensitivity and ownership are used to assess the feasibility of development. There are many groupings of highly ranked land across the state, but the largest stretch of land runs from outside of Marana (south-central Arizona) northwest to about 60 miles west of Wickenburg (central-west). This regions is mainly on BLM, state, and privately owned land. Some of this land is considered sensitive, but non-sensitive areas with high potential are frequent throughout. Renewable potential in other states could be determined using this tool as well. Variables could be weighted or added depending on each area's need.

Contributors

Agent

Created

Date Created
  • 2013-05

137744-Thumbnail Image.png

Increasing Energy Recovery in Microbial Electrochemical Cells (MXCs) by Studying the Effect of Ammonium on the Anaerobic Digestion of Fermentable Substrates.

Description

The effect of ammonium on microbial fermentation was investigated to improve the efficiency of microbial electrochemical cells (MXC). Electron balances of anaerobic microbial cultures with varying ammonium concentrations (reported as

The effect of ammonium on microbial fermentation was investigated to improve the efficiency of microbial electrochemical cells (MXC). Electron balances of anaerobic microbial cultures with varying ammonium concentrations (reported as g N-NH4+/L) were used to study the distribution of electrons from different fermentable substrates to acetate, propionate, and methane. Results showed that with a high ammonium concentration (between 2.25 to 3g N-NH4+/L) fewer electrons routed to methane during the fermentation of 300 me-eq./L of electron donors .The majority of electrons (~ 60-80%) in the serum bottles experiments were routed to acetate and propionate for all fermentable substrates with high ammonium concentration. While methane cannot be utilized by anode respiring bacteria (ARBs) to produce current, both acetate and propionate can, which could lead to higher Coulombic efficiencies in MXCs. Experiments in microbial electrolysis cells (MECs) with glucose, lactate, and ethanol were performed. MEC experiments showed low percentage of electrons to current (between 10-30 %), potentially due to low anode surface area (~ 3cm2) used during these experiments. Nevertheless, the fermentation process observed in the MECs was similar to serum bottles results which showed significant diversion of electrons to acetate and propionate (~ 80%) for a control concentration of 0.5 g N-NH4+/L .

Contributors

Agent

Created

Date Created
  • 2013-05

148009-Thumbnail Image.png

Analysis of Various Renewable Energy Systems as a Potential Replacement to Industrial Diesel Engine Systems [CLOSED DEFENSE]

Description

This thesis explores the investigation of the project “Designing for a Post-Diesel Engine World”, a collaborative experiment between organizations within Arizona State University and an undisclosed company. This investigation includes

This thesis explores the investigation of the project “Designing for a Post-Diesel Engine World”, a collaborative experiment between organizations within Arizona State University and an undisclosed company. This investigation includes the analysis of various renewable energy technologies and their potential to replace industrial diesel engines as used in the company’s business. In order to be competitive with diesel engines, the technology should match or exceed diesel in power output, have reduced environmental impact, and meet other criteria standards as determined by the company. The team defined the final selection criteria as: low environmental impact, high efficiency, high power, and high technology readiness level. I served as the lead Hydrogen Fuel Cell Researcher and originally hypothesized that PEM fuel cells would be the most viable solution. Results of the analysis led to PEM fuel cells and Li-ion batteries being top contenders, and the team developed a hybrid solution incorporating both of these technologies in a technical and strategic solution. The resulting solution design from this project has the potential to be modified and implemented in various industries and reduce overall anthropogenic emissions from industrial processes.

Contributors

Agent

Created

Date Created
  • 2021-05